归纳猜想证明通过计算可得下列等式:2^2-1^2=2*1+1,3^2-2^2=2*2+1,4^2-3^2=2*3+1……
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 06:05:12
归纳猜想证明
通过计算可得下列等式:
2^2-1^2=2*1+1,3^2-2^2=2*2+1,4^2-3^2=2*3+1……(n+1)^2-n^2=2n+1.将以上各式分别相加得:(n+1)^2-1^2=2*(1+2+……+n)+n,即1+2+……+n=【n(n+1)】/2.
试类比上述求法,求出1^2+2^2+……+n^2的值
通过计算可得下列等式:
2^2-1^2=2*1+1,3^2-2^2=2*2+1,4^2-3^2=2*3+1……(n+1)^2-n^2=2n+1.将以上各式分别相加得:(n+1)^2-1^2=2*(1+2+……+n)+n,即1+2+……+n=【n(n+1)】/2.
试类比上述求法,求出1^2+2^2+……+n^2的值
类推如下:
2^3-1^3=2^2+2*1+1^2
3^3-2^3=3^2+3*2+2^2
4^3-3^3=4^2+4*3+3^2
.
n^3-(n-1)^3=n^2+n*(n-1)+(n-1)^2
以上各式累加可得:
2[1^2+2^2+...+n^2]=n^3+n^2-[1*2+2*3+3*4+...+n*(n-1)]
其中:1*2+2*3+3*4+...+n*(n-1)= 2*【n*(n^2-1)/6】.①
所以:1^2+2^2+……+n^2=n*(2n+1)*(n+1)/6;
你应该学了排列组合吧,事实上,n*(n-1)/2=Cn取2,(就是n个数里面任取2个的取法那个),而课本上有个公式:【Cn取k】+【Cn取(k+1)】=【c(n+1)取(k+1)】,而①你化简以后就是:【C(n+1)取3】啦,最后调整一下结构就是结果了.
再说一下:我为什没会想到那样分解呢?因为有一个立方公式是:a^3-b^3=(a-b)*(a*2+a*b+b*2),而上面式子里面:a-b=n-(n-1)=1,所以没体现出来.而且这个平方和公式有用,要记住!
最后祝你学习愉快,高考成功!
2^3-1^3=2^2+2*1+1^2
3^3-2^3=3^2+3*2+2^2
4^3-3^3=4^2+4*3+3^2
.
n^3-(n-1)^3=n^2+n*(n-1)+(n-1)^2
以上各式累加可得:
2[1^2+2^2+...+n^2]=n^3+n^2-[1*2+2*3+3*4+...+n*(n-1)]
其中:1*2+2*3+3*4+...+n*(n-1)= 2*【n*(n^2-1)/6】.①
所以:1^2+2^2+……+n^2=n*(2n+1)*(n+1)/6;
你应该学了排列组合吧,事实上,n*(n-1)/2=Cn取2,(就是n个数里面任取2个的取法那个),而课本上有个公式:【Cn取k】+【Cn取(k+1)】=【c(n+1)取(k+1)】,而①你化简以后就是:【C(n+1)取3】啦,最后调整一下结构就是结果了.
再说一下:我为什没会想到那样分解呢?因为有一个立方公式是:a^3-b^3=(a-b)*(a*2+a*b+b*2),而上面式子里面:a-b=n-(n-1)=1,所以没体现出来.而且这个平方和公式有用,要记住!
最后祝你学习愉快,高考成功!
归纳猜想证明通过计算可得下列等式:2^2-1^2=2*1+1,3^2-2^2=2*2+1,4^2-3^2=2*3+1……
观察下列等式:第一个等式是1+2=3,第二个等式是2+3=5,第三个等式是4+5=9,第四个等式是8+9=17,…猜想:
观察下列各式:1*1/2=1-1/2,2*2/3=2-2/3……(1)猜想并写出第n个等式.(2)证明你写出等式的正确性
通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=
1×1/2=1-1/2,2×2/3=2-2/3.猜想第N个等式,证明你写出的等式的正确性
观察下列各等式:1=1的平方;1+3=2的平方;1+3+5+7=4的平方……通过上述观察,你能猜想出反映这种规律的一般结
陈景润是如何证明哥德巴赫猜想1+2=3的
观察下列各等式1=1*11+3=2*21+3+5=3*31+3+5+7=4*4通过观察你能猜想出反应规律的一般结论吗?你
观察下列按规律排列的等式:0+1=1,2×1+2=2,3×2+3=3,4×3+4=4,…,猜想第10个等式为( )
如何证明“1+2”(哥德巴赫猜想)
证明哥德巴赫猜想中的1+2
求哥德巴赫猜想1+2证明过程?