在数列an中,a1=1.an+1=(1+1/n)an +(n+1)/2^n (1)设bn=an/n,求数列{bn}的通项
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 11:56:35
在数列an中,a1=1.an+1=(1+1/n)an +(n+1)/2^n (1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和Sn
在数列an中,a1=1,an+1=(1+1/n)an +(n+1)/2^n (1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和Sn
在数列an中,a1=1,an+1=(1+1/n)an +(n+1)/2^n (1)设bn=an/n,求数列{bn}的通项公式
(1)
a(n+1)=(1+ 1/n)an+(n+1)/2ⁿ=[(n+1)/n]an+(n+1)/2ⁿ
a(n+1)/(n+1)=an/n +1/2ⁿ
a(n+1)/(n+1)-an/n=1/2ⁿ
an/n -a(n-1)/(n-1)=1/2^(n-1)
a(n-1)/(n-1)-a(n-2)/(n-2)=1/2^(n-2)
…………
a2/2-a1/1=1/2
累加
an/n -a1/1=1/2+1/2²+...+1/2^(n-1)=(1/2)[1-(1/2)^(n-1)]/(1-1/2)=1-1/2^(n-1)
an/n=a1+1-1/2^(n-1)=2- 1/2^(n-1)
bn=an/n bn=2-1/2^(n-1)
数列{bn}的通项公式为bn=2- 1/2^(n-1)
(2)
an=2n -n/2^(n-1)
Sn=a1+a2+...+an=2(1+2+...+n) -[1/1+2/2+3/2²+...+n/2^(n-1)]
令Cn=1/1+2/2+3/2²+...+n/2^(n-1)
则Cn/2=1/2+2/2²+...+(n-1)/2^(n-1)+n/2ⁿ
Cn-Cn/2=Cn/2=1+1/2+1/2²+...+1/2^(n-1)-n/2ⁿ
=1×(1-1/2ⁿ)/(1-1/2)-n/2ⁿ
=2-(n+2)/2ⁿ
Cn=4 -(n+2)/2^(n-1)
Sn=2(1+2+...+n) -Cn
=2n(n+1)/2 -4+(n+2)/2^(n-1)
=(n+2)/2^(n-1) +n²+n -4
a(n+1)=(1+ 1/n)an+(n+1)/2ⁿ=[(n+1)/n]an+(n+1)/2ⁿ
a(n+1)/(n+1)=an/n +1/2ⁿ
a(n+1)/(n+1)-an/n=1/2ⁿ
an/n -a(n-1)/(n-1)=1/2^(n-1)
a(n-1)/(n-1)-a(n-2)/(n-2)=1/2^(n-2)
…………
a2/2-a1/1=1/2
累加
an/n -a1/1=1/2+1/2²+...+1/2^(n-1)=(1/2)[1-(1/2)^(n-1)]/(1-1/2)=1-1/2^(n-1)
an/n=a1+1-1/2^(n-1)=2- 1/2^(n-1)
bn=an/n bn=2-1/2^(n-1)
数列{bn}的通项公式为bn=2- 1/2^(n-1)
(2)
an=2n -n/2^(n-1)
Sn=a1+a2+...+an=2(1+2+...+n) -[1/1+2/2+3/2²+...+n/2^(n-1)]
令Cn=1/1+2/2+3/2²+...+n/2^(n-1)
则Cn/2=1/2+2/2²+...+(n-1)/2^(n-1)+n/2ⁿ
Cn-Cn/2=Cn/2=1+1/2+1/2²+...+1/2^(n-1)-n/2ⁿ
=1×(1-1/2ⁿ)/(1-1/2)-n/2ⁿ
=2-(n+2)/2ⁿ
Cn=4 -(n+2)/2^(n-1)
Sn=2(1+2+...+n) -Cn
=2n(n+1)/2 -4+(n+2)/2^(n-1)
=(n+2)/2^(n-1) +n²+n -4
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/(2^n) (1) 设bn=an/n,求数列{bn
在数列an中,a1=1.an+1=(1+1/n)an +(n+1)/2^n (1)设bn=an/n,求数列{bn}的通项
在数列{an}中,a1=1,an+1=[(n+1)/n]*an+2(n+1),设bn=an/n,(1)证明数列{bn}是
a1=1,a(n+1)=(1+1/n)an+n+1/2^n,设bn=an/n求数列bn的通项公式
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s
在数列an中,A1=1,A(n+1)=(1+1/n)An+(n+1)/2,设Bn=An/n,求数列Bn的通项公式.
在数列{an}中,a1=1,a(n+1)=(1+1/n)*an+(n+1)/2^n,设数列bn=an/n,求{bn}的通
在数列﹛an﹜中,a1=1,a(n+1)=(1+1÷n)an+[(n+1)÷2的n次方],设bn=an÷n,求bn的通项
在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1/2^n)设bn=an/n,求bn的通项公式
设bn=(an+1/an)^2求数列bn的前n项和Tn
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/2^n(1)设bn=an/n求数列{bn}的通项公
在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和