有一道线性代数的例题,完全看不懂,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:49:14
有一道线性代数的例题,完全看不懂,
已知一个列向量
|1|
a1=|1|
|1|
求一组非零向量a2,a3,使a1,a2,a3两两正交.
a2,a3应该满足方程a1^x=0 (式中a1^表示a1的转置)
那么x1+x2+x3=0,
它的基础解系为
|1 | |0 |
$1=|0 | $2=|1 |
|-1| |-1|
把基础解析正交化,即合所求,亦即取
a2=$1 ,a3=$2-([$1,$2]/[$1,$1])$1,
其中,[$1,$2]=1,[$1,$1]=2,于是得
|1 | |0 | |1 | |-1|
a2=|0 | a3=|1 |-0.5*|0 |=0.5*|2 |
|-1| |-1| |-1| |-1|
哎呀,终于打完了,没有公式编辑器,就这样不知道大家能不能看懂,那些三行的竖线表示矩阵的那个大括号,a1^表示a1的转置,*表示乘号,/表示除号.这是同济四版第117页的例3,这也是书上的解题步骤,关于这个解题过程我是一点也没看明白,从第一行开始
a2,a3应该满足方程a1^x=0 为什么?根据哪个公式?
x1+x2+x3=0 x1,x2,x3分别指什么?这个式子怎么来的?
根据这一个方程怎么求出的基础解系,前面求基础解系的题我会做,这个却一点也没看懂,既然求出基础解系了为什么还要正交化?
只是还有一点不太明白,就是在a1^x=0中,x既然代表的是a2,a3两个列向量,那么 是不是应该
|x11,x12|
x=|x21,x22|
|x31,x32|
所以对应两个方程x11+x21+x31=0,x12+x22+x32=0
可是为什么书上写的那个过程只有一个x1+x2+x3=0呢?
已知一个列向量
|1|
a1=|1|
|1|
求一组非零向量a2,a3,使a1,a2,a3两两正交.
a2,a3应该满足方程a1^x=0 (式中a1^表示a1的转置)
那么x1+x2+x3=0,
它的基础解系为
|1 | |0 |
$1=|0 | $2=|1 |
|-1| |-1|
把基础解析正交化,即合所求,亦即取
a2=$1 ,a3=$2-([$1,$2]/[$1,$1])$1,
其中,[$1,$2]=1,[$1,$1]=2,于是得
|1 | |0 | |1 | |-1|
a2=|0 | a3=|1 |-0.5*|0 |=0.5*|2 |
|-1| |-1| |-1| |-1|
哎呀,终于打完了,没有公式编辑器,就这样不知道大家能不能看懂,那些三行的竖线表示矩阵的那个大括号,a1^表示a1的转置,*表示乘号,/表示除号.这是同济四版第117页的例3,这也是书上的解题步骤,关于这个解题过程我是一点也没看明白,从第一行开始
a2,a3应该满足方程a1^x=0 为什么?根据哪个公式?
x1+x2+x3=0 x1,x2,x3分别指什么?这个式子怎么来的?
根据这一个方程怎么求出的基础解系,前面求基础解系的题我会做,这个却一点也没看懂,既然求出基础解系了为什么还要正交化?
只是还有一点不太明白,就是在a1^x=0中,x既然代表的是a2,a3两个列向量,那么 是不是应该
|x11,x12|
x=|x21,x22|
|x31,x32|
所以对应两个方程x11+x21+x31=0,x12+x22+x32=0
可是为什么书上写的那个过程只有一个x1+x2+x3=0呢?
两个向量正交,则必有其内积为0
即向量(a1,b1,c1),(a2,b2,c2)正交,则
a1a2+b1b2+c1c2=0
所以即上面的情况
他假设列向量x,为(x1,x2,x3)
与a1正交,则a^x=0
即1*x1+1*x2+1*x3=0
解出来的两个解只是都与a1正交,
但是他自身的两个解却不一定正交,所以需要正交化
PS:
你的x11+x21+x31=0,x12+x22+x32=0的解
和x1+x2+x3=0的解是一样的,两种提法都没错.
x1+x2+x3=0是总体考虑,与(1,1,1)正交的向量设为(x1,x2,x3)
重要满足x1+x2+x3=0,就与(1,1,1)正交.
而x1+x2+x3=0 系数矩阵(1,1,1),秩为1,
则由线性方程组的解与系数行列式秩的关系,有3-1=2个解
而x11+x21+x31=0,x12+x22+x32=0,则是就直接设这两个解.
然后解.其实就是设有两个向量与(1,1,1)正交,带入
x1+x2+x3=0中,(x1,x2,x3)在这里可是变量哦
即向量(a1,b1,c1),(a2,b2,c2)正交,则
a1a2+b1b2+c1c2=0
所以即上面的情况
他假设列向量x,为(x1,x2,x3)
与a1正交,则a^x=0
即1*x1+1*x2+1*x3=0
解出来的两个解只是都与a1正交,
但是他自身的两个解却不一定正交,所以需要正交化
PS:
你的x11+x21+x31=0,x12+x22+x32=0的解
和x1+x2+x3=0的解是一样的,两种提法都没错.
x1+x2+x3=0是总体考虑,与(1,1,1)正交的向量设为(x1,x2,x3)
重要满足x1+x2+x3=0,就与(1,1,1)正交.
而x1+x2+x3=0 系数矩阵(1,1,1),秩为1,
则由线性方程组的解与系数行列式秩的关系,有3-1=2个解
而x11+x21+x31=0,x12+x22+x32=0,则是就直接设这两个解.
然后解.其实就是设有两个向量与(1,1,1)正交,带入
x1+x2+x3=0中,(x1,x2,x3)在这里可是变量哦