设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:48:26
设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀随即数x1,x2,...,xn和y1,y2,...,yn,由此得到N个点(xi,yi)(i=1,2,...,N),在数出其中满足yi≤f(xi)(i=1,2,...,N)的点数Ni.那么有随机模拟法可得S的近似值为
∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)
的图象与x轴、直线x=0和直线x=1所围成图形的面积,
∴根据几何概型易知∫01f(x)dx≈N1/N.
故答案为:N1/N.
的图象与x轴、直线x=0和直线x=1所围成图形的面积,
∴根据几何概型易知∫01f(x)dx≈N1/N.
故答案为:N1/N.
设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线
设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分
如果单调递增函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)xf(b)
函数y=f(x)的图象是在R上连续不断的曲线,且f(1)•f(2)>0,则y=f(x)在区间[1,2]上( )
若函数y=f(x)在区间[0,4]上的图像是连续不断的曲线,且方程f(x)=0,在(0,4)内仅有一个实数根,则f(0)
设f(x)在[0,1]上的图象是连续不断的一条曲线,且0≤f(x)≤1,证明:至少有一点c∈[0,1]使f(c)=c
若函数y=f(x)在区间(-2,2)上的图像连续不断的曲线,且方程f(x)=0在(-2,2)上仅有一个实数根0,则f(-
已知f(x)是定义在R上的偶函数且它图像是一条连续不断的曲线,当x>0时,f'(x)>0,若f(lg x)>f(1),求
函数y=f(x)在区间[a,b]上的图像是一条不间断的曲线,且f(a)×f(b)
函数y=f(X)的图像在区间[a,b]上是连续不断的,且f(a)*f(b)
若函数y=f(x)在区间[-2,2]上的图像为连续不断的曲线,f(x)在(-2,2)上有一个零点,则f(-2)f(2)的
急:函数f(x)的图像是[ -2,2 ]上连续不断的曲线,且满足2014f(x)次方=1/2014