已知a,b,c都是正实数,求证a^3a*b^3b*c^3c>=(abc)^a+b+c
已知a,b,c都是正实数,求证a^3a*b^3b*c^3c>=(abc)^a+b+c
已知a,b,c都是正实数,求证a^3a*b^3b*c^3c>=(abc)^a+b+c
已知abc都是正实数,求证:bc/a+ca/b+ab/c=>a+b+c
设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3
已知abc是全不相等的正实数,求证(b+c-a)/a+(a+c-b)/b+(a+b-c)/c>3
已知:a.b.c.都是正实数,且ab+bc+ca=1.求证:a+b+c>=根号3
已知:a,b,c都是正实数,且ab+bc+ca=1.求证:a+b+c≥3
a/b+b/c+c/a+3(abc)^(1/3)/a+b+c>=4证明上面不等式成立,其中a.b.c都是正实数.
设abc都是正实数,证明a/b+c+b/a+c+c/a+b大于等于3/2
设abc都是正实数,证明a/(b+c)+b/(a+c)+c/(a+b)大于等于3/2
已知a,b,c为正实数,且a+b+c=1,求证b/(a+1)+c/(b+1)+a/(c+1)≥3/4
a,b,c属于正实数,已知a/(1+a)+b/(1+b)+c/(1+c)=1,求证:a+b+c大于等于3/2