f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设f(x)在[a,b]二阶可导,f'(x)>0,f''(x)>0,证明:(b-a)f(a)b)f(x)dx
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2
设f(x)在【a,b】上连续,在(a,b)内f''(x)>0,证明:
若f(x)在[a,b]上连续,在(a,b)内可导,|f'(x)|小于等于M,f(a)=0,求证:f(x)dx在[a,b]
设f(x)在区间[a,b]上连续,证明∫上限a,下限b.f(x)dx=∫上限a,下限bf(a+b-x)dx.
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少
设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]