作业帮 > 数学 > 作业

求积分∫(x^7-4x^5-x^3+5x+1)/(x^5-2x^4-x+2)dx的具体解答过程

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 14:13:37
求积分∫(x^7-4x^5-x^3+5x+1)/(x^5-2x^4-x+2)dx的具体解答过程
求积分∫(x^7-4x^5-x^3+5x+1)/(x^5-2x^4-x+2)dx的具体解答过程
有理分式求积分的通用解法:
(1)化为真分式和一个多项式的和.
(2)将真分式分解为若干个一次和二次真分式的和.
(3)分别求各项积分.

∫ (x^7-4x^5-x^3+5x+1)/(x^5-2x^4-x+2) dx
= ∫ [ (x^2+2x) + (1+x)/(x^5-2x^4-x+2) ] dx
= ∫ [ (x^2+2x) + 1/[(x^2+1)(x-1)(x-2)] ] dx
= ∫ [ (x^2+2x) + 1/10 * [ (3x+1)/(x^2+1) - 5/(x-1) + 2/(x-2)] ] dx
= x^3/3 +x^2 + 1/10 * [ 3/2 * ln(1+x^2) + arctan(x) - 5ln|x-1| + 2ln|x-2| ] + C