设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:18:45
设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?
设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?(题目中的“[ ]”是绝对值、“limx—0”是极限趋于0)
设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?(题目中的“[ ]”是绝对值、“limx—0”是极限趋于0)
limx—0 f’’(x) / [x] =1 ,由极限的保号性质,说明f''(0)>0,所以f'(x)在0附近是递增的,因为f’(x)=0,所以,f'(x)先是小于零,然后等于0,然后大于零,也就是f(x)先递减后递增,所以f(0)是f(x)的极小值.
设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值
1.设函数f(x)具有连续的二阶导数,且f‘(0)=0,limf''(x)/|x|=1,则f(0)是f(x)的极小值,这
设函数f(x)具有连续的二阶导数,且f'(0)=0,limf''(x)/|x|=1,则f(0)是f(x)的极小值
设f(x)具有二阶连续导数,且f′(0)=0,limx→0f″(x)|x|=1,则( )
设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|
设f(x)在x=0处连续,且limx->0f(x)-1/x=a(a为常数),求f(0),f'(0)
设函数f(x)在x=0处可导且 limx→0{[f(x)+1]/[x+sinx]}=2 则f(x)导数在x=0的值是?
证明:f(x)的二阶导数存在,且f(2)=0,f '(2)=1,则x=2是函数F(x)=(x-2)^2f(x)的极小值点
设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设f(x)有二阶连续导数且f'(x)=0,lim(x趋向于0)f''(x)/|x|=1则
设f(x)有连续导数,且f(0)=0,f'(0)≠0,