作业帮 > 综合 > 作业

在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点.

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 11:43:18
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点.
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点.
法1:(Ⅰ)依题意,点N的坐标为N(0,-p),
可设A(x1,y1),B(x2,y2),
直线AB的方程为y=kx+p,与x2=2py联立得

x2=2py
y=kx+p,
消去y得x2-2pkx-2p2=0.
由韦达定理得x1+x2=2pk,x1x2=-2p2
于是S△ABN=S△BCN+S△ACN=
1
2•2p|x1−x2|
=p|x1−x2|=p
(x1+x2)2−4x1x2
=p
4p2k2+8p2=2p2
k2+2,
∴当k=0时,(S△ABN)min=2
2p2.
(Ⅱ)假设满足条件的直线l存在,其方程为y=a,
AC的中点为O',l与AC为直径的圆相交于点P,Q,PQ的中点为H,
则O'H⊥PQ,Q'点的坐标为(x1,
y1+p
2).
∵|O′P|=
1
2|AC|=
1
2

x21+(y1−p)2=
1
2

y21+p2,|O′H|=|a−
y1+p
2|=
1
2|2a−y1−p|,
∴|PH|2=|O'P|2-|O'H|2=
1
4(
y21+p2)−
1
4(2a−y1−p)2=(a−
p
2)y1+a(p−a),
∴|PQ|2=(2|PH|)2=4[(a−
p
2)y1+a(p−a)].
令a−
p
2=0,得a=
p
2,此时|PQ|=p为定值,
故满足条件的直线l存在,其方程为y=
p
2,
即抛物线的通径所在的直线.
解法2:(Ⅰ)前同解法1,再由弦长公式得|AB|=
1+k2|x1−x2|=
1+k2•
(x1+x2)2−4x1x2=
1+k2•
4p2k2+8p2=2p
1+k2•
k2+2,
又由点到直线的距离公式得d=
2p

1+k2.
从而S△ABN=
1
2⋅d•|AB|=
1
2•2p
1+k2•
k2+2•
2p

1+k2=2p2
k2+2,∴当k=0时,(S△ABN)min=2
2p2.
(Ⅱ)假设满足条件的直线l存在,其方程为y=a,则以AC为直径的圆的方程为(x-0)(x-x1)+(y-p)(y-y1)=0,
将直线方程y=a代入得x2-x1x+(a-p)(a-y1)=0,
则|x1-x2|2=
x21−4(a−p)(a−y1)=4[(a−
p
2)y1+a(p−a)].
设直线l与以AC为直径的圆的交点为P(x3,y3),Q(x4,y4),
则有|PQ|=|x3−x4|=
4[(a−
p
2)y1+a(p−a)]=2
(a−
p
2)y1+a(p−a).
令a−
p
2=0,得a=
p
2,此时|PQ|=p为定值,故满足条件的直线l存在,其方程为y=
p
2,
即抛物线的通径所在的直线.
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点. 在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x 2 =2py(p>0)相交于A、B两点。 (2008•长宁区二模)在平面直角坐标系xOy中,过定点C(p,0)作直线与抛物线y2=2px(p>0)相交于A,B两点 在平面直角坐标系xoy中,过定点C(p,0)作直线m与抛物线y^2=2px(p>0)相交于A 、B两点.(1)设N(-p 在平面直角坐标系xOy中,过y轴正方向上一点(0,c)任作一直线,与抛物线y=x^2相交于A、B两点. 在平面直角坐标系xOy中,过点P(0,2)任意作一条与抛物线y=ax2(a>0)交于两点的直线,设交点为A、B,则A、B 在平面直角坐标系xOy中,过点P(0,2)任作一条与抛物线y=ax2(a>0)交于两点的直线 (2004•北京)已知:在平面直角坐标系xOy中,过点P(0,2)任作一条与抛物线y=ax2(a>0)交于两点的直线,设 在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x^2相交于A、B两点. (2014•河南模拟)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内 在平面直角坐标系xOy中,过点P(-4,0)作直线交椭圆C:x2a2+y23=1(a>0)于A,B两点,设点B关于x轴的 数学附加在平面直角坐标系xoy中,过点C(2,0)做直线与抛物线y^2=2px(p>0)相交于M、N两点.