已知抛物线y2=4x,点M(1,0)关于y轴对称点为N,直线L过点M交抛物线于AB两点.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:59:22
已知抛物线y2=4x,点M(1,0)关于y轴对称点为N,直线L过点M交抛物线于AB两点.
(1)证明:NA,NB的斜率互为相反数;
(2)求△ANB面积最小值
(3)第三问不要求过程
若M(m,0)时,(1)是否仍成立?△ANB面积最小值又是多少?
(1)证明:NA,NB的斜率互为相反数;
(2)求△ANB面积最小值
(3)第三问不要求过程
若M(m,0)时,(1)是否仍成立?△ANB面积最小值又是多少?
N(-1,0)
直线L:x=ty+1,与抛物线y2=4x联立后得
y^2-4ty-4=0,
y1+y2=4t,y1y2=-4
(1)kNA+kNB=y1/(y1^2/4 + 1) +y2/(y2^2/4 + 1)
=[1/4y1y2^2+1/4y1^2y2+y1+y2]/(y1^2/4 + 1)(y2^2/4 + 1)
=(y1y2/4 +1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-1+1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1) =0
(2)S=1/2*|AB|*d
d=|-2|/√(1+t^2)=2/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(1+t^2)
=4(1+t^2)
S=1/2*|AB|*d
=1/2*4(1+t^2)*2/√(1+t^2)
=4√(1+t^2)
当t=0,Smin=4
(3)若M(m,0)时,(1)仍成立
直线L:x=ty+m,与抛物线y2=4x联立后得
y^2-4ty-4m=0,
y1+y2=4t,y1y2=-4m
(1)kNA+kNB=y1/(y1^2/4 + m) +y2/(y2^2/4 + m)
=[1/4y1y2^2+1/4y1^2y2+my1+my2]/(y1^2/4 + m)(y2^2/4 + m)
=(y1y2/4 +m)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-m+m)(y1+y2)/(y1^2/4 + m)(y2^2/4 + m) =0
(2)S=1/2*|AB|*d
d=|-2m|/√(1+t^2)=|2m|/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(m+t^2)
S=1/2*|AB|*d
=1/2*√(1+t^2)*√16(m+t^2)*|2m|/√(1+t^2)
=|m|*√16(m+t^2)
=4√m^2(m+t^2)
令u=m^2(m+t^2),u'=2m^2*t=0,
当t>0,u'>0,当t
直线L:x=ty+1,与抛物线y2=4x联立后得
y^2-4ty-4=0,
y1+y2=4t,y1y2=-4
(1)kNA+kNB=y1/(y1^2/4 + 1) +y2/(y2^2/4 + 1)
=[1/4y1y2^2+1/4y1^2y2+y1+y2]/(y1^2/4 + 1)(y2^2/4 + 1)
=(y1y2/4 +1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-1+1)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1) =0
(2)S=1/2*|AB|*d
d=|-2|/√(1+t^2)=2/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(1+t^2)
=4(1+t^2)
S=1/2*|AB|*d
=1/2*4(1+t^2)*2/√(1+t^2)
=4√(1+t^2)
当t=0,Smin=4
(3)若M(m,0)时,(1)仍成立
直线L:x=ty+m,与抛物线y2=4x联立后得
y^2-4ty-4m=0,
y1+y2=4t,y1y2=-4m
(1)kNA+kNB=y1/(y1^2/4 + m) +y2/(y2^2/4 + m)
=[1/4y1y2^2+1/4y1^2y2+my1+my2]/(y1^2/4 + m)(y2^2/4 + m)
=(y1y2/4 +m)(y1+y2)/(y1^2/4 + 1)(y2^2/4 + 1)
=(-m+m)(y1+y2)/(y1^2/4 + m)(y2^2/4 + m) =0
(2)S=1/2*|AB|*d
d=|-2m|/√(1+t^2)=|2m|/√(1+t^2)
|AB|=√(1+t^2)|y1-y2|=√(1+t^2)*√[(y1+y2)^2-4y1y2]
=√(1+t^2)*√16(m+t^2)
S=1/2*|AB|*d
=1/2*√(1+t^2)*√16(m+t^2)*|2m|/√(1+t^2)
=|m|*√16(m+t^2)
=4√m^2(m+t^2)
令u=m^2(m+t^2),u'=2m^2*t=0,
当t>0,u'>0,当t
已知抛物线y2=4x,点M(1,0)关于y轴对称点为N,直线L过点M交抛物线于AB两点.
已知抛物线y^2=4x,点M(1,0)关于y轴对称的对称点为N,直线l过点M交抛物线于AB两点
高中一道数学题已知过点M(a, 0),a大于0,的动直线L交抛物线Y*2=4x于A,B两点,点N与点M关于Y轴对称,当a
已知抛物线y^2=4x,过点M(-1,0)作一条直线l与抛物线相交于不同的两点A,B,点A关于x轴对称点为C,求证直线B
过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点
过点M(2,0)作斜率为1的直线L,交抛物线y^2=4X于A.B两点,求|AB|
如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.
已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B两点
已知抛物线C:y^2=4x的准线与x轴交于M点过M点斜率为k的直线l与抛物线C相交于AB两点
已知点A(-1,0),F(1,0)和抛物线C:y²=4x,O为坐标原点,过点A的动直线l交抛物线C于M、P两点
已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.
已知抛物线C:y²=12x,点M(a,0),过M得直线L交抛物线C于A,B两点(1)设a为小于0的常数,点A关