一个初三几何题在△ABC中,CA=CB,∠A=30°,D为AB的中点.以D为顶点作∠EDF=60°,∠EDF两边分别交A
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 18:15:27
一个初三几何题
在△ABC中,CA=CB,∠A=30°,D为AB的中点.以D为顶点作∠EDF=60°,∠EDF两边分别交AC,CB于EF两点.
如图1,当点EF在边AC BC上时,试探究:①DE/DF= ②线段CE,CF,AC之间存在怎样的数量关系.并证明你的结论.
(图如下,结论我知道 主要是证明)谢谢各位了
在△ABC中,CA=CB,∠A=30°,D为AB的中点.以D为顶点作∠EDF=60°,∠EDF两边分别交AC,CB于EF两点.
如图1,当点EF在边AC BC上时,试探究:①DE/DF= ②线段CE,CF,AC之间存在怎样的数量关系.并证明你的结论.
(图如下,结论我知道 主要是证明)谢谢各位了
1、从D点作DG,使〈GDB=〈ADE,
△ABC中,
∵CA=CB,
〈EAD=〈GBD=30度,〈ACB=180度-30度-30度=120度,
AD=BD,
〈GDB=〈ADE,
∴△AED≌△BGD,
∴DE=DG,
〈DGB=〈AED,
〈CED+〈AED=〈DGB+〈FGD=180度,
〈FGD=〈CED,
又〈EDF+〈ECF=120度+60度=180度,
E、D、F、C四点共圆,
〈DFG=〈CED(圆内接四边形外角等于内对角),
∴〈FGD=〈GFD,
DG=DF,
∴DF=DE,
∴DE/DF=1.
(2)、取AC中点H,连结DH,
H是RT三角形ADC斜边的中点,AH=CH=DH,
〈HCD=120度/2=60度,
三角形CHD是正三角形,
CD=HD,
由前所述,DF=DE,
〈HDE=60度-〈CDE,
〈CDF=60度-〈CDE,
〈HDE=〈FDC,
∴△HED≌△CDF,
∴CF=HE,
∴CE+CF=HC=AC/2.
△ABC中,
∵CA=CB,
〈EAD=〈GBD=30度,〈ACB=180度-30度-30度=120度,
AD=BD,
〈GDB=〈ADE,
∴△AED≌△BGD,
∴DE=DG,
〈DGB=〈AED,
〈CED+〈AED=〈DGB+〈FGD=180度,
〈FGD=〈CED,
又〈EDF+〈ECF=120度+60度=180度,
E、D、F、C四点共圆,
〈DFG=〈CED(圆内接四边形外角等于内对角),
∴〈FGD=〈GFD,
DG=DF,
∴DF=DE,
∴DE/DF=1.
(2)、取AC中点H,连结DH,
H是RT三角形ADC斜边的中点,AH=CH=DH,
〈HCD=120度/2=60度,
三角形CHD是正三角形,
CD=HD,
由前所述,DF=DE,
〈HDE=60度-〈CDE,
〈CDF=60度-〈CDE,
〈HDE=〈FDC,
∴△HED≌△CDF,
∴CF=HE,
∴CE+CF=HC=AC/2.
一个初三几何题在△ABC中,CA=CB,∠A=30°,D为AB的中点.以D为顶点作∠EDF=60°,∠EDF两边分别交A
在Rt三角形ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D旋转,两边交AC、CB(
如图,△ABC中,∠C=90°,CA=CB,点D是AB边的中点,E,F分别在CA,CB上,且∠EDF=90° A求证:D
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC
如图,在△ABC中,AD是BC边上的中线,以D为顶点作∠EDF=90°,DE、DF分别交AB、AC于E、F,且BE2+C
如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别交边AB于
△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别叫AB于E,交射
问一道数学题的证明已知RT△ABC 中,AC=BC D为AB边的中点,∠EDF=90° ∠EDF 绕 D点旋转,它的两边
几何题求证明全过程在直角△ABC中,D为斜边AB的中点,E,F分别在AC,BC上,∠EDF=90°,已知CE=4,AE=
已知三角形ABC中,AB=AC,∠BAC=90°,直角∠EDF的顶点D是BC中点,两边DE,DF分别交AB,AC于点E,
如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,DE交AB边于
一道初三数学题求秒答如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=