对空间任一点O和不共线的三点A,B,C,若:OP(向量)=XOA+YOB+ZOC (其中x+y+z=1),则四点P、A、
对空间任一点O和不共线的三点A,B,C,若:OP(向量)=XOA+YOB+ZOC (其中x+y+z=1),则四点P、A、
对空间任一点O和不共线的三点A,B,C,若:OP(向量)=XOA+YOB+ZOC,则X+Y+Z=1是四点P,A,B,C共
空间向量基本定理已知空间任意一点O和不共线的三点A.B.C,满足OP=xOA+yOB+zOC(x.y.z∈R),则“点P
空间任意一点O和不共线三点A B C满足 OP向量=xOA向量+yOB向量+zOC向量(xyz属于R)则 x+y+z=1
对于空间人一点不共线的三点A,B,C,若OP(向量)=XOA+YOB+ZOC (xyz属于R),则P,A,B,C,D四点
空间任意一点O和不共线三点A B C满足 OP向量=xOA向量+yOB向量+zOC向量(xyz属于R),则PABC四点共
空间向量 op=xOA+yOB+zOC x+y+z=1 为什么四点就是共面的?
向量,如果P,A,B三点共线,则有OP=xOA+yOB,(x+y=1),怎么证明
已知P和不共线三点A,B,C四点共面且对于空间任一点O,都有向量OP=2向量OA+向量OB+λ向量OC,则λ=
已知O,A,B是不共线的三点,且向量OP=mOA+nOB,若m+n=1,证A,B,P三点共线
O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=
若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+