设f(x)在(0,+∞)上有定义,且f'(1)=a(a≠0) ,又对任意x,y∈(0,+∞),有f(xy)=f(x)+f
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 16:44:05
设f(x)在(0,+∞)上有定义,且f'(1)=a(a≠0) ,又对任意x,y∈(0,+∞),有f(xy)=f(x)+f(y),求f(x)
∵f(x)在(0,+∞)上有定义,对任意x,y属于(0,+∞)有 :
f(xy)=f(x)+f(y)
∴由函数性质可知:
对数函数的定义域为(0,+∞),对任意x,y属于(0,+∞)都有 f(xy)=f(x)+f(y)成立
∴f(x)为对数函数
设f(x)=log(b,x)(以b为底·,x的对数)
∵f '(1)=a(a不等于0)
又F’(x)=1/(xlnb)
∴ F’(1)=1/(lnb)=a,即:
alnb=1
解得:b=e^(1/a)【e的1/a次方】
∴f(x)=log(e^(1/a),x),【以e^(1/a)为底,x的对数】
f(xy)=f(x)+f(y)
∴由函数性质可知:
对数函数的定义域为(0,+∞),对任意x,y属于(0,+∞)都有 f(xy)=f(x)+f(y)成立
∴f(x)为对数函数
设f(x)=log(b,x)(以b为底·,x的对数)
∵f '(1)=a(a不等于0)
又F’(x)=1/(xlnb)
∴ F’(1)=1/(lnb)=a,即:
alnb=1
解得:b=e^(1/a)【e的1/a次方】
∴f(x)=log(e^(1/a),x),【以e^(1/a)为底,x的对数】
设f(x)在(0,+∞)上有定义,且f'(1)=a(a≠0) ,又对任意x,y∈(0,+∞),有f(xy)=f(x)+f
设f(x)是在定义(0,+∞)上的单调递增函数,且对定义域内任意x,y都有f(xy)=f(x)+f(y)且f(2)=1,
设f(x)是定义在(0,+∞)上的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)+f(y),f(2)=1
设f(x)是定义在(0,+∞)上的单调增函数,且对任意x,y属于(0,+∞)有f(xy)=f(x)+f(y).求证f(x
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意a、b∈R,有f(a+b)=f(a)·f(
定义在R上的函数y=f(x),f(0)≠0,当x<0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)×f
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1且对任意的a,b∈R有f(a+b)=f(a)*f(b
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(
定义在R上的函数f(x),满足对任意x y∈R恒有f(xy)=f(x)+f(y) 且f(x)不恒为0 求f(1)和f(-
设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,求
设定义在R上的函数f(x),对任意x,y∈R有f(x+y)=f(x)+f(y0,且当x>0时,恒有f(x)>0若f(1)
设函数y=f(x)定义在R上,当x>0时f(x)>1,且对于任意实数a,b∈R,有f(a+b)=f(a)f(b)判断f(