已知二次函数f(x)=ax^2+bx(a≠0),且f(x+1)为偶函数,定义:满足f(x)=x的实数x成为函数f(x)的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:32:54
已知二次函数f(x)=ax^2+bx(a≠0),且f(x+1)为偶函数,定义:满足f(x)=x的实数x成为函数f(x)的“不动点”,若函数f(x)有且仅有一个不动点.
是否存在区间[m,n](m
是否存在区间[m,n](m
f(x+1)=ax^2+(2a+b)x+a+1为偶函数,即2a+b=0
又因为f(x)=x只有唯一解,即方程ax^2+bx=x只有一解,△=(b-1)^2=0,所以b=1,a=-1/2
f(x)=-x^2/2 + x
当对称轴x=1∈[m,n]时,值域中3n为最大值1/2,即n=1/6,显然不可能使x=1∈[m,n]
当m>1时,f(m)=3n,f(n)=3m,显然m,n均大于0,由f(x)>0,可知m,n∈[1,2],即3m,3n∈[3,6],但f(x)的最大值不超过1/2,显然此时m、n不存在
当n<1时,f(m)=3m,f(n)=3n,解得m=-4,n=0
又因为f(x)=x只有唯一解,即方程ax^2+bx=x只有一解,△=(b-1)^2=0,所以b=1,a=-1/2
f(x)=-x^2/2 + x
当对称轴x=1∈[m,n]时,值域中3n为最大值1/2,即n=1/6,显然不可能使x=1∈[m,n]
当m>1时,f(m)=3n,f(n)=3m,显然m,n均大于0,由f(x)>0,可知m,n∈[1,2],即3m,3n∈[3,6],但f(x)的最大值不超过1/2,显然此时m、n不存在
当n<1时,f(m)=3m,f(n)=3n,解得m=-4,n=0
已知二次函数f(x)=ax^2+bx(a≠0),且f(x+1)为偶函数,定义:满足f(x)=x的实数x成为函数f(x)的
已知二次函数 f(x)=ax^+bx(a不等于零),且f(x+1)为偶函数,定义:满足f(x)=x的实数x
已知二次函数f(x)=ax^2+bx+1为偶函数,且f(-1)=-1,求函数f(x)的解析式
已知二次函数f(x)=ax^2+bx满足f(1+x)=f(1-x)且方程f(x)=x有两个相等实数,
已知二次函数f(x)=ax^2+bx满足f(1+x)=f(1-x)且方程f(x)=x有两个相等实数,若函数f(x)在定义
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)={f(x),x>0 -f(x),x
已知二次函数f(x)=ax^2+bx(a,b为常数,且a≠0)满足条件:f(2)=0且方程f(x)=x有两个相等的实数根
已知函数f(x)x∈R满足f(x)=2bx/ax-1,a≠0,f(1)=1,且使f(x)=2x成立的实数只有一个,求函数
已知二次函数f(x)=ax^2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切
已知二次函数f(x)=ax^2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.
已知函数f(x)=x/ax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x有唯一实数解,求函数f(x)的解析
已知二次函数f(x)=ax平方+bx满足f(2)=0,且方程f(x)=x有等根,求f(x)的值域,