已知函数f(x)=(x+1)lnx-x+1.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:39:19
已知函数f(x)=(x+1)lnx-x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x-1)f(x)≥0.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x-1)f(x)≥0.
(Ⅰ)函数的定义域为(0,+∞)
求导函数,可得f′(x)=
x+1
x+lnx−1=lnx+
1
x,…(2分)
∴xf′(x)=xlnx+1,
题设xf′(x)≤x2+ax+1等价于lnx-x≤a,
令g(x)=lnx-x,则g′(x)=
1
x−1.…(4分)
当0<x<1时,g′(x)>0;当x≥1时,g′(x)≤0,
∴x=1是g(x)的最大值点,
∴g(x)≤g(1)=-1.…(6分)
综上,a的取值范围是[-1,+∞).…(7分)
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=-1,即lnx-x+1≤0;
当0<x<1时,f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0;…(10分)
当x≥1时,f(x)=lnx+(xlnx-x+1)=lnx+x(lnx+
1
x-1)≥0
所以(x-1)f(x)≥0…(13分)
求导函数,可得f′(x)=
x+1
x+lnx−1=lnx+
1
x,…(2分)
∴xf′(x)=xlnx+1,
题设xf′(x)≤x2+ax+1等价于lnx-x≤a,
令g(x)=lnx-x,则g′(x)=
1
x−1.…(4分)
当0<x<1时,g′(x)>0;当x≥1时,g′(x)≤0,
∴x=1是g(x)的最大值点,
∴g(x)≤g(1)=-1.…(6分)
综上,a的取值范围是[-1,+∞).…(7分)
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=-1,即lnx-x+1≤0;
当0<x<1时,f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0;…(10分)
当x≥1时,f(x)=lnx+(xlnx-x+1)=lnx+x(lnx+
1
x-1)≥0
所以(x-1)f(x)≥0…(13分)
已知函数f(x)=lnx+1x
已知函数f(x)=(x+1)lnx-x+1.
已知函数f(x)=(x+1)lnx-x+1.
已知函数f(x)=lnx-x,h(x)=lnx/x.
已知函数f(x)=lnx+a/x,g(x)=x,F(x)=f(1+e的x次方)-g(x),x属于R
已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2
已知函数f(x)=x-lnx,g(x)=lnx/x (1)求函数f(x)的单调区间
已知函数f(x)=lnx+ax+(a+1)/x
已知函数f(x)=(1-x)/(ax) + lnx.
已知函数f(x)=1/2x^2+lnx
已知函数f(x)=-x^2+ax+1-lnx
已知函数f(x)=1/2x²+lnx