证明:1+1/2+1/3+……+1/n>In(n+1)+n/(2n+2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 08:59:01
证明:1+1/2+1/3+……+1/n>In(n+1)+n/(2n+2)
推荐:给你一个简单的证明方法:构造函数法.我们注意到:ln(n+1)=ln[(n+1)/n]+ln[n/(n-1)]+...+ln(3/2)+ln(2/1),而n/(n+1)=1-1/(n+1)=[1-1/2]+[1/2-1/3]+...+[1/n-1/(n+1)],于是我们根据不等两边通项构造函:f(x)=x-ln(1+x)-(1/2)[x-x/(x+1)],x>0,求导易得:f(x)=x^2/[2(x+1)^2]>0,即f(x)在x>0上单调递增,又f(x)在x=0可连续则f(x)>f(0)=0,x>0.即x-ln(1+x)-(1/2)[x-x/(x+1)]>0,亦即x>ln(1+x)+(1/2)[x-x/(x+1)],现将x用1/n(>0)替换整理可得:1/n>ln[(n+1)/n]+(1/2)[1/n-1/(n+1)],并将此不等式n项累加得:1+1/2+1/3+...+1/n>{ln[(n+1)/n]+ln[n/(n-1)]+...+ln(2/1)}+(1/2){[1-1/2]+[1/2-1/3]+...+[1/n-1/(n+1)]}=ln(n+1)+(1/2)[1-1/(n+1)]=ln(n+1)+n/(2n+2),于是原命题得证!
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)
数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
证明:1+1/2+1/3+……+1/n>In(n+1)+n/(2n+2)