a为n阶方阵E为n阶单位阵,切A^2+2A-3E=0.证明A和A-4E可逆、求A^-1 和(A-4E)^-1的值.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:55:48
a为n阶方阵E为n阶单位阵,切A^2+2A-3E=0.证明A和A-4E可逆、求A^-1 和(A-4E)^-1的值.
还有一张线性代数的卷子..对于高手来说做做非常快的..求啊..能做的追加的20...急死了
还有一张线性代数的卷子..对于高手来说做做非常快的..求啊..能做的追加的20...急死了
A(A+2E)=3E,因此A可逆,A^(-1)=(A+2E)/3
(A--4E)(A+6E)=A^2+2A--24E=--21E,因此A--4E可逆,且(A--4E)^(--1)=--(A+6E)/(21)
再问: 巨感谢。。大神能帮忙做个卷子如果可以追加分数,不行的话我就直接给分了。
再答: 马上要去上课了。没时间了。
(A--4E)(A+6E)=A^2+2A--24E=--21E,因此A--4E可逆,且(A--4E)^(--1)=--(A+6E)/(21)
再问: 巨感谢。。大神能帮忙做个卷子如果可以追加分数,不行的话我就直接给分了。
再答: 马上要去上课了。没时间了。
a为n阶方阵E为n阶单位阵,切A^2+2A-3E=0.证明A和A-4E可逆、求A^-1 和(A-4E)^-1的值.
设A为n阶方阵,E为n阶单位阵,满足条件A^2=A,且A≠E,证明:(1)A+E可逆,并求(A+E)^-1 ,(2)A不
设A为n阶方阵,且(A-E)可逆,A^2+2A-4E=0.证明(A+3E)可逆,并求(A+3E)^-1
A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1
设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1
已知n阶方阵A满足2A(A-E)=A^3,证明E-A可逆,并求(E-A)^(-1)
设A为n阶方阵,且满足(A-E)^2=2(A+E)^2,证明A是可逆的,并求A^-1
设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆
已知A为n阶方阵,且满足A^2-3A-4E=0,证明:A可逆,并求A-1次方
设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
设n 阶方阵A 满足A(2次方)-A+2E=0 ,证明:A-E 可逆,并求(A-E)-1次方