如图,已知抛物线经过原点O和x轴上另一点A,它的堆成轴为x=2,直线y=-2x-1经过抛物线上一点B(-2.m),且与y
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 15:13:13
如图,已知抛物线经过原点O和x轴上另一点A,它的堆成轴为x=2,直线y=-2x-1经过抛物线上一点B(-2.m),且与y轴,直线x=2,分别交与D、E,
(1)求m的值、
(2)抛物线的解析式.
(3)求证、BD=DE.
(1)求m的值、
(2)抛物线的解析式.
(3)求证、BD=DE.
(1)∵ 点B(-2,m)在直线y=-2x-1上,
∴ m=-2×(-2)-1=3.
∴ B(-2,3)
∵ 抛物线经过原点O和点A,对称轴为x=2,
∴ 点A的坐标为(4,0) .
设所求的抛物线对应函数关系式为y=a(x-0)(x-4).
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ .
∴ 所求的抛物线对应的函数关系式为 ,即 .
(2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5).
过点B作BG‖x轴,与y轴交于F、直线x=2交于G,
则BG⊥直线x=2,BG=4.
在Rt△BGC中,BC= .
∵ CE=5,
∴ CB=CE=5.
②过点E作EH‖x轴,交y轴于H,
则点H的坐标为H(0,-5).
又点F、D的坐标为F(0,3)、D(0,-1),
∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.
∴ △DFB≌△DHE (SAS),
∴ BD=DE.
即D是BE的中点. …………………
∴ m=-2×(-2)-1=3.
∴ B(-2,3)
∵ 抛物线经过原点O和点A,对称轴为x=2,
∴ 点A的坐标为(4,0) .
设所求的抛物线对应函数关系式为y=a(x-0)(x-4).
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ .
∴ 所求的抛物线对应的函数关系式为 ,即 .
(2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5).
过点B作BG‖x轴,与y轴交于F、直线x=2交于G,
则BG⊥直线x=2,BG=4.
在Rt△BGC中,BC= .
∵ CE=5,
∴ CB=CE=5.
②过点E作EH‖x轴,交y轴于H,
则点H的坐标为H(0,-5).
又点F、D的坐标为F(0,3)、D(0,-1),
∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.
∴ △DFB≌△DHE (SAS),
∴ BD=DE.
即D是BE的中点. …………………
如图,已知抛物线经过原点O和x轴上另一点A,它的堆成轴为x=2,直线y=-2x-1经过抛物线上一点B(-2.m),且与y
已知抛物线经过原点O和X轴上另一点A,它的对称轴X=2与X轴交于点C,直线Y=2X-1经过抛物线上一点B(-2,M),且
如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴X=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,
如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x+1
如图,抛物线Y=x^2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移,使它经过原点
(2009•江苏模拟)已知,如图,抛物线经过原点O和点B(m,-3),它的对称轴x=-2与x轴交于点A,直线y=-2x+
如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所在的直线沿y轴向上平移,使它经过原点
已知抛物线的对称轴是直线x=3,顶点A在x轴上,且经过点B(1,-2),直线y=二分之一x+m与抛物线交于点B,C &n
如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
如图,已知抛物线y=-x2+bx+9-b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点
A.B是抛物线Y平方=4x上的2点,且满足OA垂直OB(O为原点),求证:直线AB经过一个定点
已知抛物线经过坐标原点O和X轴上另一点E,顶点M坐标(2,4)矩形ABCD顶点A与O重合,AD AB分别在X轴Y轴上,且