已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,(1)设bn=a(n+1)-2an,求证:{bn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 14:58:46
已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,(1)设bn=a(n+1)-2an,求证:{bn}为等比数列; (2)
已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,
(1)设bn=a(n+1)-2an,求证:{bn}为等比数列;
(2)设Cn=an/2^n,求证:{Cn}为等差数列.
已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,
(1)设bn=a(n+1)-2an,求证:{bn}为等比数列;
(2)设Cn=an/2^n,求证:{Cn}为等差数列.
1.S(n+1) = 4an + 2 .(1)
则:Sn = 4a(n-1) + 2 .(2)
两式相减:a(n+1) = 4an - 4a(n-1)
a(n+1) - 2an = 2[an - 2a(n-1)]
∴{a(n+1) - 2an}={bn} 是等比数列,且公比q=2
2.∵S2=a1 + a2 = 4a1 + 2
∴a2=5
则:b1=a2 - 2a1 =3
bn=3×2^(n-1) ,n∈N
即:a(n+1) - 2an =3×2^(n-1)
则:a(n+1)=3×2^(n-1) + 2an
C(n+1) - Cn = a(n+1)/2^(n+1) - an/2^n =[3×2^(n-1) + 2an]/[2^(n+1)] - (2an)/2^n
=[3×2^(n-1)]/[2^(n+1)]
= 3/4
∴{Cn}为等差数列,且公差d=3/4
则:Sn = 4a(n-1) + 2 .(2)
两式相减:a(n+1) = 4an - 4a(n-1)
a(n+1) - 2an = 2[an - 2a(n-1)]
∴{a(n+1) - 2an}={bn} 是等比数列,且公比q=2
2.∵S2=a1 + a2 = 4a1 + 2
∴a2=5
则:b1=a2 - 2a1 =3
bn=3×2^(n-1) ,n∈N
即:a(n+1) - 2an =3×2^(n-1)
则:a(n+1)=3×2^(n-1) + 2an
C(n+1) - Cn = a(n+1)/2^(n+1) - an/2^n =[3×2^(n-1) + 2an]/[2^(n+1)] - (2an)/2^n
=[3×2^(n-1)]/[2^(n+1)]
= 3/4
∴{Cn}为等差数列,且公差d=3/4
已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,(1)设bn=a(n+1)-2an,求证:{bn
已知数列的前n项和为Sn,且a1=1,S(n+1)=4an+2,(1)设bn=a(n+1)--2n,求证bn是等比数列,
已知数列{an}的前n项和为Sn,a1=1,a(n+1)=1+2Sn.设bn=n/an,求证:数列{bn}的前n项和Tn
已知数列An,Sn是它的前n项和,A1=1,S(n+1)=4An+2,设Bn=A(n+1)-2An求证Bn是等比数列,并
已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,设Bn=n/Sn-n+2前N项和为Tn 求证Tn
已知数列{an}的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N+).设bn=an+1,求bn的通
已知数列{an}的前n项和为Sn,且a1=2,3Sn=5an-A(n-1)+3S(n-1)(n≥2,n属于N*)设bn=
已知数列an的前n和为Sn,且Sn+1=4an+2.a1=1,设bn=an+1-2an.求证数列bn是等比数列
设数列{an}的前N项和为Sn,已知a1=1,S(n+1)=4an+2 1设bn=a下标(n+1)-2an 2求数列an
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
数列{an}前n项和为Sn,已知a1=1,S(n+1)=4an+2,1、设bn=a(n+1)-2an,求bn的通项公式2
已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}