已知圆x²+y²+x-6y+3=0上两点P、Q满足:①关于直线kx-y+4=0对称;②OP⊥OQ,求
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:09:38
已知圆x²+y²+x-6y+3=0上两点P、Q满足:①关于直线kx-y+4=0对称;②OP⊥OQ,求直线PQ的方程
首先化曲线方程为:
(x+1/2)^2 + (y-3)^2 = (5/2)^2
这是一个圆
那么PQ在圆上,PQ关于直线对称,那么此直线就是线段PQ的垂直平分线,直线必过圆心(-1/2,3)
圆心在直线上代入得 -k/2 - 3 + 4 = 0
k=2
直线为2x-y+4=0 (1)
由于POQ为直角三角形,又OP=OQ=5/2为半径,故为等腰直角三角形.
假设PQ的中点为M(x,y)
应该有|OM|=5*根号2 /4
|OM|^2=(x+1/2)^2 + (y-3)^2 = 25/8 (2)
联立:(1),(2)
求得M为( -1/2 +(√10)/4 ,3+(√10)/2 )
或 (-1/2 - (√10)/4,3-(√10)/2 )
PQ垂直于直线,故斜率为-1/2
PQ过M,
可以写出PQ的方程:
8y+4x-22-5√10 = 0
或8y+4x-22+5√10 = 0
希望对你有所帮助
(x+1/2)^2 + (y-3)^2 = (5/2)^2
这是一个圆
那么PQ在圆上,PQ关于直线对称,那么此直线就是线段PQ的垂直平分线,直线必过圆心(-1/2,3)
圆心在直线上代入得 -k/2 - 3 + 4 = 0
k=2
直线为2x-y+4=0 (1)
由于POQ为直角三角形,又OP=OQ=5/2为半径,故为等腰直角三角形.
假设PQ的中点为M(x,y)
应该有|OM|=5*根号2 /4
|OM|^2=(x+1/2)^2 + (y-3)^2 = 25/8 (2)
联立:(1),(2)
求得M为( -1/2 +(√10)/4 ,3+(√10)/2 )
或 (-1/2 - (√10)/4,3-(√10)/2 )
PQ垂直于直线,故斜率为-1/2
PQ过M,
可以写出PQ的方程:
8y+4x-22-5√10 = 0
或8y+4x-22+5√10 = 0
希望对你有所帮助
已知圆x²+y²+x-6y+3=0上两点P、Q满足:①关于直线kx-y+4=0对称;②OP⊥OQ,求
已知圆x+y+x-6y+3=0上两点P,Q满足:①关于直线kx-y+4=0对称②OP⊥OQ(O为圆心).求直线PQ的方程
已知圆x^2+y^2+x-6y+3=0上的两点P,Q满足:①关于直线kx-y+4=0对称;②OP⊥OQ,求直线PQ的方程
已知曲线x^2+y^2+x-6y+3=0上两点P、Q满足:①关于直线kx-y+4=0对称;②OP⊥OQ.求直线PQ的方程
已知园c:x^2+y^2+x-6y+3=0上有两点p,Q满足①馆一直线kx-y+4=0对称,②OP垂直OQ,求直线的方程
圆x2+y2+x-6y+3=0上两点P、Q满足 ①关于直线kx-y+4=0对称,②OP⊥OQ.
圆X^2+Y^2+X-6y=0上两点P,Q满足1.关于直线KX-Y+4=0对称.2OP垂直 OQ.求直线PQ的方程
x^2+y^2-6y+3=0上两点P,Q满足:1,关于直线kx-y+4=0对称;2OP垂直OQ.求直线PQ的方程.
X^2+Y^2+X-6Y=0上存在两点P,Q,满足P,Q关于直线KX-Y+4=0对称,且OP垂直于OQ,求PQ方程
曲线x平方+y平方+x-6y=0上存在两点p,q满足pq关于直线kx-y+4=0对称,且op垂直于oq求直线pq的方程
已知x²+y²+x-6y+3=0上有两点PQ,满足关于直线y=kx+4对称,且向量OP⊥向量OQ(o
曲线x^2+y^2+x-6y+3=0上两点P,Q满足:(1)关于直线kx-y+4=0对称(2)OP垂直OQ