作业帮 > 数学 > 作业

如图所示,△ABC中,AC=BC,D为边AB上一点,且,∠BCD=3∠ACD,O为AC上一点,以O为圆心的⊙O恰好经过C

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 06:43:40
如图所示,△ABC中,AC=BC,D为边AB上一点,且,∠BCD=3∠ACD,O为AC上一点,以O为圆心的⊙O恰好经过C、D
如图所示,△ABC中,AC=BC,D为边AB上一点,且,∠BCD=3∠ACD,O为AC上一点,以O为圆心的⊙O恰好经过C
问题:(1)求证直线AB是⊙O的的切线;(2)若BD=4,AD=2,求⊙O的半径.
1.过C作CE垂直AB,连接OD
因为AC=BC,所以角ACE=BCE,AE=BE
因为角BCD=3ACD
所以角ACD=DCE
因为OD=OC,所以角ODC=OCD
所以角DCE =ODC,OD平行CE
所以OD垂直AB,得AB是圆的切线
2.BD=4,AD=2,得AB=6,AE=3
因OD平行CE,有AD:DE=AO:OC=2:1
所以AO=2OD,角A=30度,AD=根号3OD
所以OD=3分之根号3AD=3分之2根号3
即半径=3分之2根号3
如图所示,△ABC中AC=BC,D为边AB上一点,且∠BCD=3∠ACD,O为AC上一点,以O为圆心的⊙O恰好经过C、D 如图所示,△ABC中,AC=BC,D为边AB上一点,且,∠BCD=3∠ACD,O为AC上一点,以O为圆心的⊙O恰好经过C 三角形ABC中AC=BC,DC为边AB上一点,且角BCD=3角ACD,O为AC上一点,以O为圆心的圆O恰好经过C、D两点 如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E. 如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC、BC相切于点D、E 如图所示,已知Rt△ABC中,∠C=90°,O为斜边AB上一点,以O为圆心的圆与边AC、BC分别相切于点E、F,若AC= 已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一点O为圆心的⊙O与BC相切于点C,与AC相交于点D. 如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D 已知Rt△ABC中,∠C=90°,BC=a,AC=b,以斜边AB上的一点O为圆心,作圆O使圆O与直角边AC,BC都相切, 已知Rt△ABC中,∠C=90°,O为斜边AB上的一点,以O为圆心的圆与边AC,BC分别相切于点E,F,若AC=1,BC 如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于 如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以BC上一点O为圆心作⊙O与AB相切于E,与AC相切于C,又⊙