作业帮 > 数学 > 作业

过原点直线与圆:x^2+y^2-6x+5=0 交于A,B,求AB中点m的轨迹方程

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 00:52:01
过原点直线与圆:x^2+y^2-6x+5=0 交于A,B,求AB中点m的轨迹方程
过原点直线与圆:x^2+y^2-6x+5=0 交于A,B,求AB中点m的轨迹方程
圆X^2+Y^2-6X+5=0,
标准方程是(x-3)^2+y^2=4
圆心坐标(3,0)
利用所给条件,找到直线之间的关系,过原点的直线和过弦中点与圆心的直线垂直
设M点的坐标为(X,Y),中点M在过原点的直线上,所以过原点的直线斜率为k1=y/x
过弦中点与圆心的直线斜率为
k2=(y-0)/(x-3)=y/(x-3)
K1*k2=-1
最后得到x^2-3x+y^2=0,
化标准方程(x-3/2)^2+y^2=9/4