已知:如图,在Rt三角形ABC中,AB=AC,角BAC=90度,点D为BC上任一点,DE垂直于AB于E,DF垂直AB于E
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:03:57
已知:如图,在Rt三角形ABC中,AB=AC,角BAC=90度,点D为BC上任一点,DE垂直于AB于E,DF垂直AB于E,DF垂直AC
于F,M为BC中点,试判断三角形MEF的形状,并证明你的结论
于F,M为BC中点,试判断三角形MEF的形状,并证明你的结论
△MEF必是等腰直角三角形.
证明:不失一般性令D在CM之间.
因为DE⊥AC,DF⊥AB,又∠A=90°,所以AE=AB-AF=BF
又在等腰Rt△ABC中M为BC中点,所以AM=BM,加上∠EAM=∠FBM=45°
故△EAM≌△FBM,得:EM=FM,∠EMA=∠FMB.∠EMA=∠FMB.
同理,由CE=AF,∠C=∠FAM=45°,CM=AM有△ECM≌△FAM,得:∠EMC=∠FMA.
所以,∠EMF=∠FMA+∠EMA=∠EMC+∠FMB.
又∠EMF+∠EMC+∠FMB=180°,所以,∠EMF=90°.
综合上述:△MEF必然是等腰直角三角形!
证明:不失一般性令D在CM之间.
因为DE⊥AC,DF⊥AB,又∠A=90°,所以AE=AB-AF=BF
又在等腰Rt△ABC中M为BC中点,所以AM=BM,加上∠EAM=∠FBM=45°
故△EAM≌△FBM,得:EM=FM,∠EMA=∠FMB.∠EMA=∠FMB.
同理,由CE=AF,∠C=∠FAM=45°,CM=AM有△ECM≌△FAM,得:∠EMC=∠FMA.
所以,∠EMF=∠FMA+∠EMA=∠EMC+∠FMB.
又∠EMF+∠EMC+∠FMB=180°,所以,∠EMF=90°.
综合上述:△MEF必然是等腰直角三角形!
已知:如图,在Rt三角形ABC中,AB=AC,角BAC=90度,点D为BC上任一点,DE垂直于AB于E,DF垂直AB于E
如图在rt三角形abc中角bac=90度ad垂直bc于d,de垂直ac于点e,df垂直ab于f说明三角形aef相似三角形
在RT三角形ABC中,AB=AC,角A等于90度,D为BC上任一点,DF垂直AB于F,DE 垂直AC于E,M为BC中点.
已知,如图,在直角三角形abc中,角bac等于90度,ab=ac,点d是bc上任意一点,de垂直ac于e点,df垂直ab
如图,在三角形ABC中,AB=AC,D为BC上一点,DE垂直AC于点E,DF垂直AB于点F,BG垂直AC于G,求证BG=
如图,三角形abc中,角a=90度,d为bc中点,de垂直于df,de角ab于e,df交ac于f
相似三角形.如图,rt三角形abc中,角bac=90度,ad垂直于bc于d,de垂直于ab于e,
如图,已知在三角形ABC中,AB=AC,CG垂直于AB,点D是BC边上的一点,DE⊥AB,DF垂直于AC.
如图,等腰△ABC中,AB=AC,在底边BC上任取一点D,过D作DE垂直于AB于E,DF垂至于AC于F,过C作CG垂直于
如图15,在三角形ABC中,已知AB=AC,D为BC的中点,DE垂直于AC,DF垂直于AB,垂足分别是点E,F,求证DF
如图,在三角形ABC中,CD垂直AB于点D,DE垂直AC于点E,DF垂直BC于点F,DE=DF.求证:CD是AB的垂直平
如图,在Rt三角形ABC中,角BAC=90度,以AB为直径作圆O交BC于E,D为AC的中点,EF垂直AB于AB点F,过A