如图,正方形ABCD和正方形CGEF(CG>BC),连接AE,取线段AE的中点M.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:50:15
如图,正方形ABCD和正方形CGEF(CG>BC),连接AE,取线段AE的中点M.
证明:FM⊥MD,且FM=MD.
证明:FM⊥MD,且FM=MD.
证明:如图,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.
∴∠ADC=∠H,∠3=∠4.
∵AM=ME,∠1=∠2,
∴△AMD≌△EMN
∴DM=NM,AD=EN.
∵ABCD和CGEF是正方形,
∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°,
∠5=∠6=90°-∠NEG=∠NEF,DC=AD=NE.
又∵∠H=90°,
∴∠DCF+∠7=∠5+∠7=90°
∴∠DCF=∠5=∠NEF
∵FC=FE,
∴△DCF≌△NEF.
∴FD=FN,∠DFC=∠NFE.
∵∠CFE=90°,
∴∠DFN=90°,即△DFN为等腰直角三角形.
又DM=MN,
∴FM⊥MD,MF=MD.
∴∠ADC=∠H,∠3=∠4.
∵AM=ME,∠1=∠2,
∴△AMD≌△EMN
∴DM=NM,AD=EN.
∵ABCD和CGEF是正方形,
∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°,
∠5=∠6=90°-∠NEG=∠NEF,DC=AD=NE.
又∵∠H=90°,
∴∠DCF+∠7=∠5+∠7=90°
∴∠DCF=∠5=∠NEF
∵FC=FE,
∴△DCF≌△NEF.
∴FD=FN,∠DFC=∠NFE.
∵∠CFE=90°,
∴∠DFN=90°,即△DFN为等腰直角三角形.
又DM=MN,
∴FM⊥MD,MF=MD.
如图,正方形ABCD和正方形CGEF(CG>BC),连接AE,取线段AE的中点M.
)如图1,已知正方形ABCD和正方形CGEF(CG>BC),B,C,G在同一条直线上,M为线段AE的中点,探究MD,MF
如图,把正方形CGEF的对角线CE放在ABCD的边BC的延长线上,(CG>BC),取线段AE的中点M,探究:MD与MF
把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M. 探究线段MD
操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(OG>BC),取线段AE的中点M.(1)如图1,
把正方形CGEF的对角线CE放在正方形ABCD边BC的延长线上CG〉BC取线段AE的中点M.并证明(1)MD⊥MF,(2
1、如图1把正方形CGEF的对角线CE放在ABCD的边BC的延长线上,(OG>BC),取线段AE的中点M,探究:MD与M
把正方形cgef我放在正方形abcd的边bc的延长线上,取线段ae的中点m,探究线段md和mf的关系
线段BG上有一点C,分别以BC、CG为边长在BG的同侧作正方形ABCD,EFCG,连接AE,取AE的中点M,连接DM、M
3.如图,等腰Rt△的斜边CE在正方形ABCD的边BC的延长线上,取线段AE的中点M,连接DF.
四边形ABCD、CGEF都是正方形.将正方形CGEF,绕点C旋转任意角度后,连接AE,点M为AE的中点,连接DM、MF,
正方形CGEF的对角线CE放在正方形ABCD的边BC延长线上,取AE中点M求证MD=MF