已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
已知函数f(x)的图像在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]) f2(
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),
用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于x=−12
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f'(a)>0,f′
已知min{a,b}表示a,b两数种的最小值,若函数f(x)=min{ |x|,|x+t|}的图像的对称轴为x=-1/2
函数y=f(X)的图像在区间[a,b]上是连续不断的,且f(a)*f(b)
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
为什么 定义在R上的函数y=f(x)对定义域内任意x有f(x+a)=f(x-b),则y=f(x)是以T=a+b为周期的函
用min{a,b}表示a,b两数中的最小值.若函数f(x)=min{|x|,|x+t|}的图象关于直线x= 对称,则t的