作业帮 > 数学 > 作业

求证明梯形中位线是梯形二分之一(上底+下底)且平行底边的题`

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:17:37
求证明梯形中位线是梯形二分之一(上底+下底)且平行底边的题`
已知:在梯形ABCD中,AD//BC,点E在AB上.点F在AC上,且AD=a,BC=b.
(1)设点E、F分别为AB、DC中点,求证:EF//BC,且EF=二分之一(a+b)
(2)如果:AE比EB=DF比FC=m比n,判断EF和BC是否平行,并用a、b、m、n的代数式表示EF,并证明.
此题没图也照样可以想象出来,就是一个普通梯形做了个中位线而已`
实质就是证明梯形中位线是梯形二分之一(上底+下底)且平行底边的题`但不懂怎么证明`请大家帮一下忙```谢谢挖```要详细过程哈`
还要证平行呢`
求证明梯形中位线是梯形二分之一(上底+下底)且平行底边的题`
(1)用到三角形中位线定理(这个用相似三角形很好证)连接AC设EF交AC于X 三角形ABC 和 CAD中
EX=BC/2 XF=AD/2
EF=EX+XF=1/2*(AD+BC)=(a+b)/2
(2)过E点作EE'//BC 设EE'交AC于X
三角形ABX
AE/EB=AX/XC
三角形CAD
XC/AX=CE'/DE'
所以AE/EB=DE'/E'C.(1)
由题设:AE/EB=DF/FC...(2)
因为在线段内根据比例是可以唯一确定一个点的
所以由(1)(2)可知
E'与F重合
由于EE'//BC
所以EF//BC
AE/EB=m/n
AB/AE=m+n/m
EX/BC=AE/AB=m/m+n
EX=mb/m+n
同理:FC/CD=n/m+n
XF=na/m+n
EF=EX+XF=(mb+na)/(m+n)