如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 18:40:07
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求:二面角A-PD-C的余弦值
(用空间向量方法)
(用空间向量方法)
以A为原点,AB、AD、AP为X轴、Y轴、Z轴建立空间坐标系.
A(0,0,0),B(1,0,0),C(1/2,√3/2,0),D(0,2√3/3,0),P(0,0,1),
E(1/4,√3/4,1/2),
设平面PDC的法向量n1=(x1,y1,1),
向量PD=(0,2√3/3,-1),向量PC=(1/2,√3/2,-1),
向量PD·n1=2y1√3/3-1=0,
y1=√3/2,
向量PC·n1=x1/2+√3y1/2-1=0,
x1/2=1/4,
x1=1/2,
i法向量n1=(1/2,√3/2,1),
而AB⊥平面PAD,
∴向量AB是平面PAD的法向量,
向量AB=(1,0,0),
向量AB·n1=1/2,
|AB|=1,
|n1|=√2,
设向量AB和n1所成角为θ,
cosθ=AB·n1/(|AB|*|n1|)=(1/2)/(√2*1)=√2/4,
∴二面角A-PD-C的余弦值为√2/4.
可以不用向量法,在底面作CM⊥AD,垂足M,在平面PAD止作MN⊥PD,连结CN,则〈CNM就是二面角A-PD-C的平面角,
MC=1/2,MN=√7/14,
NC=√14/7,
cos
A(0,0,0),B(1,0,0),C(1/2,√3/2,0),D(0,2√3/3,0),P(0,0,1),
E(1/4,√3/4,1/2),
设平面PDC的法向量n1=(x1,y1,1),
向量PD=(0,2√3/3,-1),向量PC=(1/2,√3/2,-1),
向量PD·n1=2y1√3/3-1=0,
y1=√3/2,
向量PC·n1=x1/2+√3y1/2-1=0,
x1/2=1/4,
x1=1/2,
i法向量n1=(1/2,√3/2,1),
而AB⊥平面PAD,
∴向量AB是平面PAD的法向量,
向量AB=(1,0,0),
向量AB·n1=1/2,
|AB|=1,
|n1|=√2,
设向量AB和n1所成角为θ,
cosθ=AB·n1/(|AB|*|n1|)=(1/2)/(√2*1)=√2/4,
∴二面角A-PD-C的余弦值为√2/4.
可以不用向量法,在底面作CM⊥AD,垂足M,在平面PAD止作MN⊥PD,连结CN,则〈CNM就是二面角A-PD-C的平面角,
MC=1/2,MN=√7/14,
NC=√14/7,
cos
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60度,PA=AB=BC,E是PC的中
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
在四棱锥P—ABCD中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,角ABC为60°,PA=AB=BC,E为PC中点,求
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60,PA=PB=BC=2,E是
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点
如图,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD
在四棱锥P-ABCD中,PA垂直平面ABCD,AB垂直AD,AC垂直CD,角ABC=6O',PA=AB=BC,E是PC的
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD中点.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥ABCD,E是PC的中点,已知AB=PA=2,AD=2根号2,求