已知abcd是不全为0的实数,函数f(x)=bx²+cx+d,g(x)=ax³+bx²+c
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:43:57
已知abcd是不全为0的实数,函数f(x)=bx²+cx+d,g(x)=ax³+bx²+cx+d,方程f(x)=0有实根
根都是g(f(x))=0的根,反之,g(f(x))=0的实根都是f(x)=o的根.
1.求d的值
2.若a=0,求b的取值范围
3.若a=1,f(x)=0,求c的取值范围
根都是g(f(x))=0的根,反之,g(f(x))=0的实根都是f(x)=o的根.
1.求d的值
2.若a=0,求b的取值范围
3.若a=1,f(x)=0,求c的取值范围
(一)因g(x)=ax³+bx²+d,故g[f(x)]=af³(x)+bf²(x)+d.又因方程f(x)=0与g[f(x)]=0同解,故若m是方程f(x)=0的根,则必有f(m)=0,且g[f(m)]=0.即g[f(m)]=g(0)=d=0.∴d=0.(二)当a=0时,f(x)=bx²+cx=x(bx+c),g(x)=bx².g[f(x)]=bf²(x)=bx²(bx+c)².由题设可知,两方程x(bx+c)=0,bx²(bx+c)²=0同解.又a,b,c,d不全为0,故此时必有b≠0,而c∈R.(三)若a=1,f(1)=0,===>b+c=0.则有f(x)=-cx(x-1).g(x)=x³-cx²=x²(x-c),g[f(x)]=f²(x)[f(x)-c]²=-c³x²(x-1)²(x²-x+1),由题设知,方程-cx(x-1)=0与-c³x²(x-1)²(x²-x+1)同解.易知,当c≠0时,两方程的解均为0,1.同解.当c=0时,两方程的解均为R.故此时c∈R.
已知abcd是不全为0的实数,函数f(x)=bx²+cx+d,g(x)=ax³+bx²+c
已知a,b,c,d是不全为零的实数,函数f(x)=bx^2+cx+d,g(x)=ax^3+bx^2+cx+d,方程f(x
1. 已知a b c d 是不全为0的实数,函数f(x)=bx^2+cx+d,g(x)=ax^3+bx^2+cx+d
若f(x)=ax²+bx+c(a≠0)是偶函数,则判断g(x)=ax³+bx²+cx的奇偶
我自认为很难的数学题已知a b c d 是不全为零的实数 函数f(x)=bx^2+cx+d g(x)=ax^3+bx^2
已知三次函数f(x)=ax³+bx²+cx+d 的图像如图,求f(x)的表达式,并求f(4)的值
已知函数f(x)=ax³+bx²+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2
已知三个关于X的一元二次方程:aX²+bX+c=0,bX²+cX+a=0,cX²+aX+b
已知a,b,c,d是不全为0的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d,方程f(x)=0
已知f(x)=ax^2+bx+c(a不等于0)是偶函数,试判断函数g(x)=ax^3+bx^2+cx的奇偶性
1已知f(x)=ax^2+bx+c(a≠0)是偶数,试判断函数g(x)=ax^3+bx^2+cx的奇偶性
f(x)=ax²+bx(a≠0),若函数对称轴为x=1,且方程f(x)=x有相等的实数根