函数的奇偶性已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,都有f(ab)=af(b)+bf(a)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 00:08:54
函数的奇偶性
已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,都有f(ab)=af(b)+bf(a)
(1)求f(0)、f(1)的值
(2)判断函数f(x)的奇偶性,并加以证明
已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,都有f(ab)=af(b)+bf(a)
(1)求f(0)、f(1)的值
(2)判断函数f(x)的奇偶性,并加以证明
(1)令a=b=0,代入得f(0)=0•f(0)+0•f(0)=0.
令a=b=1,代入得f(1)=1•f(1)+1•f(1),则f(1)=0.
(2)∵f(1)=f[(-1)2]=-f(-1)-f(-1)=0,∴f(-1)=0.
令a=-1,b=x,则f(-x)=f(-1•x)=-f(x)+xf(-1)=-f(x),
因此f(x)是奇函数.(仅供参考)
再问: 懂了
再答: 由问题我们就知道ab=0.。代入到后面分解后的式子上
令a=b=1,代入得f(1)=1•f(1)+1•f(1),则f(1)=0.
(2)∵f(1)=f[(-1)2]=-f(-1)-f(-1)=0,∴f(-1)=0.
令a=-1,b=x,则f(-x)=f(-1•x)=-f(x)+xf(-1)=-f(x),
因此f(x)是奇函数.(仅供参考)
再问: 懂了
再答: 由问题我们就知道ab=0.。代入到后面分解后的式子上
函数的奇偶性已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,都有f(ab)=af(b)+bf(a)
已知f(x)是定义在R上的不恒为0的函数且对于任意的a,b都满足f(a+b)=af(b)=bf(a)判断f(x)的奇偶性
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足f(ab)=af(b)+bf(a) (1)求f(0
已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a)
已知函数f(x)是定义在R上的不恒为零的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a)
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足f(ab)=af(b)+bf(a)
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(ab)=af(b)+bf(a).
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a),判断f(x)
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a),(1)求f(
已知函数f(x)是定义在R上的不恒为0的函数,且对任意的a,b∈R都满足f(ab)=af(b)+bf(a)
f(x)是定义在R上的不恒为0的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a).判断f(x)的奇
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a)