作业帮 > 数学 > 作业

已知函数f(x)对于任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,试判断f(x)的单调性

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 22:15:49
已知函数f(x)对于任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,试判断f(x)的单调性.
已知函数f(x)对于任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,试判断f(x)的单调性
答:
任意实数x和y:f(x+y)=f(x)+f(y)
x>0时f(x)>0
令y=0:f(x+0)=f(x)+f(0),f(0)=0
令x+y=0:f(0)=f(x)+f(-x)=0
所以:f(-x)=-f(x)
所以:f(x)是奇函数
设x>y,x-y>0,f(x-y)>0
所以:f(x-y)=f(x)+f(-y)=f(x)-f(y)>0
所以:f(x)>f(y)
所以:f(x)是单调递增函数