已知f(x)=ax的3次方+bx的2…+cx在区间[0,1]上是增函数,在区间(-∞.0)(1.+∞)上是减函数,又f'
已知f(x)=ax的3次方+bx的2…+cx在区间[0,1]上是增函数,在区间(-∞.0)(1.+∞)上是减函数,又f'
已知f(x)=ax的3次方+bx的2…+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又f
已知f(x)=ax^3+bx^2+cx在区间[0,1]上是增函数,在区间[-无穷,0],[1,+无穷]上是减函数,又f'
已知f(x)=ax^3+bx^2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数
已知函数f﹙x﹚=ax^3+bx^2+cx在区间[0,1]上是增函数,在﹙0,﹢∞﹚上是减函数,又f'﹙1/2﹚=3/2
已知f(x)=ax^3+bx^2+cx在区间(0,1)上是增函数,在区间(负无穷,0),(1,正无穷)上是减函数.又f'
函数f(x)=ax³+bx²+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减
已知f(x)=x^3+bx^2+cx+d在区间(-∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0
已知f(x)=ax^2+bx^2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)是减函数,求f'(1/
已知f(x)=ax³+bx²+cx在区间[0,1]上是增函数,在区间(负无穷,0)(1,正无穷)
已知f(x)=x^3+bx^2+cx+d在(负无穷到0的开区间)上是增函数,在(0到2的闭区间上)是减函数,且方程f(x
已知函数f (x)=ax^3+bx^2+cx+a^2的单调递增区间是(1,2),且满足f(0)=1