初中的,圆的证明已知圆O的直径PQ,两条弦PA、QB相交于圆内一点M,分别过点A和B作圆O的两切线,两条切线点是N,连接
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 12:45:40
初中的,圆的证明
已知圆O的直径PQ,两条弦PA、QB相交于圆内一点M,分别过点A和B作圆O的两切线,两条切线点是N,连接MN .求证:MN⊥PQ
已知圆O的直径PQ,两条弦PA、QB相交于圆内一点M,分别过点A和B作圆O的两切线,两条切线点是N,连接MN .求证:MN⊥PQ
请参考我的空间一文:
http://hi.baidu.com/jswyc/blog/item/acaa5ece9118123af9dc611b.html
注意字母的标注可能不同.确有疑问发消息给我.
已知MN是圆O的直径,弦MA、NB相交于圆内一点C,分别过A、B作圆的切线,两条切线交于点D,连接CD .求证:CD⊥MN
http://zhidao.baidu.com/question/81203830.html
证明:
连接MB、NA并延长MB、NA交于点E,连接EC并延长交MN于Q,过A作切线交CE于P
因为MN是直径
所以AM⊥EN,BN⊥ME,即AM、BN是△EMN的两条高
所以∠ACE+∠AEC=90°,即∠NEQ+∠ACP=90°
根据“三角形三条高交于一点”的性质知EQ也是△EMN的高,即EQ⊥MN
所以∠NEQ+∠ENM=90°
所以∠ACP=∠ENM
因为AP是切线
所以∠PAM=∠ENM,即∠PAC=∠ENM
所以∠ACP=∠PAC
所以PC=PA
因为∠PAE+∠PAC=90°,即∠PEA+∠PCA=90°
所以∠PAE=∠PEA
所以PA=PE
所以P是CE的中点
同样地,如果过B作圆的切线交CE于点H,可以证明H也是CE的中点
即过A、B所作圆的切线都经过CE的中点
所以点D就是CE的中点,即点D在EQ上
因为EQ⊥MN
所以CD⊥MN
(如果要知道如何证明三角形性质:“三角形三条高交于一点”,请参考:
http://hi.baidu.com/jswyc/blog/item/f6849e7fafcc1c3f0cd7da88.html)
江苏吴云超祝你学习进步
http://hi.baidu.com/jswyc/blog/item/acaa5ece9118123af9dc611b.html
注意字母的标注可能不同.确有疑问发消息给我.
已知MN是圆O的直径,弦MA、NB相交于圆内一点C,分别过A、B作圆的切线,两条切线交于点D,连接CD .求证:CD⊥MN
http://zhidao.baidu.com/question/81203830.html
证明:
连接MB、NA并延长MB、NA交于点E,连接EC并延长交MN于Q,过A作切线交CE于P
因为MN是直径
所以AM⊥EN,BN⊥ME,即AM、BN是△EMN的两条高
所以∠ACE+∠AEC=90°,即∠NEQ+∠ACP=90°
根据“三角形三条高交于一点”的性质知EQ也是△EMN的高,即EQ⊥MN
所以∠NEQ+∠ENM=90°
所以∠ACP=∠ENM
因为AP是切线
所以∠PAM=∠ENM,即∠PAC=∠ENM
所以∠ACP=∠PAC
所以PC=PA
因为∠PAE+∠PAC=90°,即∠PEA+∠PCA=90°
所以∠PAE=∠PEA
所以PA=PE
所以P是CE的中点
同样地,如果过B作圆的切线交CE于点H,可以证明H也是CE的中点
即过A、B所作圆的切线都经过CE的中点
所以点D就是CE的中点,即点D在EQ上
因为EQ⊥MN
所以CD⊥MN
(如果要知道如何证明三角形性质:“三角形三条高交于一点”,请参考:
http://hi.baidu.com/jswyc/blog/item/f6849e7fafcc1c3f0cd7da88.html)
江苏吴云超祝你学习进步
初中的,圆的证明已知圆O的直径PQ,两条弦PA、QB相交于圆内一点M,分别过点A和B作圆O的两切线,两条切线点是N,连接
过圆O:X2+Y2=R2外一点M(a,b)作圆O的两条切线,P,Q为切点,则过P,Q,M三点的圆方程是?直线PQ的方程是
如图,过圆O外一点P作圆O的两条切线PA、PB,A、B为切点,BD⊥PA于点D,AE⊥PB于点E,AE、BD交于点H 求
已知从圆O外一点P作圆O的切线PA,PB,分别切圆O于点A,B,在劣弧⌒AB上取任一点C,过点C作圆O的切线
如图,已知PA、PB是圆O的两条切线,A、B为切点,连接OP交圆O于点D,交AB于点C,(1)证明:PO垂直平分AB
如图,三角形ABC内接于圆O,BC=AC,过B、C分别作圆O的切线,两条切线相交...
从圆O外一点P作圆O的两条切线,分别切圆O于点A,B,过AB弧上任意一点C作圆O的切线分别交PA,PB于点E,F.(1
如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交
已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点
已知P是圆O外一点,PA,PB是圆O的两条切线,切点分别是A,B,BC是直径.求证AC平行OP
如图,PA、PB是圆O的两条切线,切点分别是A、B,直线OP交圆O于点D、E,交AB于点C,已知PA=4,PD=2,求O
如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,