已知经过点A(1,-3),B(0,4)的圆C与圆x2+y2-2x-4y+4=0相交,它们的公共弦平行于直线2x+y+1=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:46:29
已知经过点A(1,-3),B(0,4)的圆C与圆x2+y2-2x-4y+4=0相交,它们的公共弦平行于直线2x+y+1=0.
(Ⅰ)求圆C的方程;
(Ⅱ)若动圆M经过一定点P(3,0),且与圆C外切,求动圆圆心M的轨迹方程.
(Ⅰ)求圆C的方程;
(Ⅱ)若动圆M经过一定点P(3,0),且与圆C外切,求动圆圆心M的轨迹方程.
(Ⅰ)设圆C的方程为x2+y2+Dx+Ey+F=0,
∵圆C与圆x2+y2-2x-4y+4=0相交
∴两圆的公共弦方程为(D+2)x+(E+4)y+F-4=0,
∵圆C经过点A(1,-3),B(0,4),公共弦平行于直线2x+y+1=0
∴
−
D+2
E+4=−2
D−3E+F+10=0
4E+F+16=0,∴
D=6
E=0
F=−16
∴圆C的方程为x2+y2+6x-16=0,即(x+3)2+y2=25.(4分)
(Ⅱ)圆C的圆心为C(-3,0),半径r=5.
∵动圆M经过一定点P(3,0),且与圆C外切
∴|MC|-|MP|=5<|PC|=6.
∴动圆M圆心的轨迹是以C,P为焦点,实轴长为5的双曲线的右支.(7分)
设双曲线的方程为
x2
a2−
y2
b2=1(a>0,b>0),
∵c=3,a=
5
2
∴b2=c2−a2=
11
4,
故动圆圆心M的轨迹方程是
x2
25
4−
y2
11
4=1(x>0).(8分)
∵圆C与圆x2+y2-2x-4y+4=0相交
∴两圆的公共弦方程为(D+2)x+(E+4)y+F-4=0,
∵圆C经过点A(1,-3),B(0,4),公共弦平行于直线2x+y+1=0
∴
−
D+2
E+4=−2
D−3E+F+10=0
4E+F+16=0,∴
D=6
E=0
F=−16
∴圆C的方程为x2+y2+6x-16=0,即(x+3)2+y2=25.(4分)
(Ⅱ)圆C的圆心为C(-3,0),半径r=5.
∵动圆M经过一定点P(3,0),且与圆C外切
∴|MC|-|MP|=5<|PC|=6.
∴动圆M圆心的轨迹是以C,P为焦点,实轴长为5的双曲线的右支.(7分)
设双曲线的方程为
x2
a2−
y2
b2=1(a>0,b>0),
∵c=3,a=
5
2
∴b2=c2−a2=
11
4,
故动圆圆心M的轨迹方程是
x2
25
4−
y2
11
4=1(x>0).(8分)
已知经过点A(1,-3),B(0,4)的圆C与圆x2+y2-2x-4y+4=0相交,它们的公共弦平行于直线2x+y+1=
已知圆C与圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,又圆C经过点A(-2,3),B(
求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的
一个圆经过点(1,3)且与圆x2+y2-8x+7y-10=0相交,它们的公共弦所在直线方程为2x-3y-6=0,求这个圆
一个圆经过点(1,3)且与圆x2+y2-8x+7y-10=0相交,它们的公共弦所在直线方程为2x-3y-6=0,
已知直线l:mx+ny-1=0(m,n∈R*)与x轴相交于点A,与y轴相交于点B,且直线l与圆x2+y2=4相交所得弦长
已知点P(x,y)满足x+y≤4y≥xx≥1,过点P的直线l与圆C:x2+y2=14相交于A、B两点,则AB的最小值为
已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1),(1)求实数a的取值范围以
已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1),
直线l与圆x2+y2+2x-4y+a=0相交于A,B两点,弦AB中点c(-2,3),l的方程为
已知圆C1:x2+y2-2x-4y+1=0与圆C2:x2+y2+2x+4y-4=0相交于A,B两点. 1、求直线AB的方
求与已知圆x+y-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,且过(-2,3),(1,4)的圆的方程