在数列{an}中,a1=a+1/a(a>0),a(n+1)=a1-1/an(1)求a2,a3的值,并猜想an表达式(2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 07:51:09
在数列{an}中,a1=a+1/a(a>0),a(n+1)=a1-1/an(1)求a2,a3的值,并猜想an表达式(2)用数学归纳法证明.
(1)a2 = a1-1/a1 = (a^4+a^2+1)/a(a^2+1)
a3=a2-1/a2 = (a^8+a^6+a^4+a^2+1)/a(a^2+1)(a^4+a^2+1)
猜想an = (a^2^n+a^(2^n-2)+...+1)/a(a^2+1)(a^4+a^2+1)(a^2^(n-1)+a^(2^(n-1)-2)...+1)
(2)需要证明(a^2^n+a^(2^n-2)+...+1)^2 - [a(a^2+1)(a^4+a^2+1)(a^2^(n-1)+a^(2^(n-1)-2)...+1)]^2 =a^2^(n+1)+a^(2^(n+1)-2)+...+1.
为方便,设p(n)=a^2^n+a^(2^n-2)+...+1,n>=1,即要证明
p(n)^2-[ap(1)p(2)...p(n-1)]^2=p(n+1),n>=2.
当n=1时,p(1)^2-a^2=(a^2+1)^2-a^2=a^4+a^2+1,结论成立.
容易验证n=2时结论成立.
使用归纳法,假设结论对n=k成立,p(k)^2-[ap(1)p(2)...p(k-1)]^2=p(k+1),
当n=k+1时,
a3=a2-1/a2 = (a^8+a^6+a^4+a^2+1)/a(a^2+1)(a^4+a^2+1)
猜想an = (a^2^n+a^(2^n-2)+...+1)/a(a^2+1)(a^4+a^2+1)(a^2^(n-1)+a^(2^(n-1)-2)...+1)
(2)需要证明(a^2^n+a^(2^n-2)+...+1)^2 - [a(a^2+1)(a^4+a^2+1)(a^2^(n-1)+a^(2^(n-1)-2)...+1)]^2 =a^2^(n+1)+a^(2^(n+1)-2)+...+1.
为方便,设p(n)=a^2^n+a^(2^n-2)+...+1,n>=1,即要证明
p(n)^2-[ap(1)p(2)...p(n-1)]^2=p(n+1),n>=2.
当n=1时,p(1)^2-a^2=(a^2+1)^2-a^2=a^4+a^2+1,结论成立.
容易验证n=2时结论成立.
使用归纳法,假设结论对n=k成立,p(k)^2-[ap(1)p(2)...p(k-1)]^2=p(k+1),
当n=k+1时,
在数列{an}中,a1=a+1/a(a>0),a(n+1)=a1-1/an(1)求a2,a3的值,并猜想an表达式(2)
在数列{an}中,a1=13,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式( )
数列{an}中,a1=3/5,a(n+1)=an/(2an+1),1,计算a2,a3,a4的值 2,猜想an的表达式并用
在数列{an}中,已知a1=1/3,a1+a2+.+an/n=(2n-1)an (1)求,a2,a3,a4,并猜想an的
给定数列an={a1,a2,a3.an},bn=a(n+1)-an
已知数列满足a(n+1)=1/(2-an),a1=a,(1)求a1,a2,a3,a4;(2)猜想数列{an}的通项公式,
数列an中,Sn=4-an-1/2^(n-2),求a1,a2,a3,a4并猜想an的表达式
已知数列{an}满足:a1=1,且an-a(n-1)=2n.求a2,a3,a4.求数列{an}通项an
设数列{an}的前n项和为Sn,并且满足2Sn=an²+n,an>0.(1)求a1,a2,a3.(2)猜想{a
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
数列{an}中,a1=0 ,a2=6且a(n+2)=5a(n+1)-6an 求{an}的通项公式
在数列{an}中,已知a1=-20,a(n+1)=an+4,则|a1|+|a2|+|a3|+...+|a20|=