作业帮 > 数学 > 作业

在△ABC中,若sinA+sinB=sinC•(cosA+cosB),试判断△ABC的形状.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:51:39
在△ABC中,若sinA+sinB=sinC•(cosA+cosB),试判断△ABC的形状.
在△ABC中,若sinA+sinB=sinC•(cosA+cosB),试判断△ABC的形状.
∵sinB=sin[180°-(A+C)]=sin(A+C)=sinAcosC+cosAsinC,
又∵sinA+sinB=sinC•(cosA+cosB),
∴sinA+sinAcosC+cosAsinC=sinCcosA+sinCcosB,
∴sinA=sinCcosB-sinAcosC,
在△ABC中,sinA=sin(B+C),
∴sin(B+C)=sinCcosB-sinAcosC,即sinBcosC+cosBsinC=sinCcosB-sinAcosC,
∴cosC(sinB+sinA)=0,
∵sinB>0,sinA>0,
∴cosC=0,
∴a2+b2=c2
∴△ABC是直角三角形.