作业帮 > 数学 > 作业

如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 04:54:12
如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.

(1)求EG的长;
(2)求证:CF=AB+AF.
如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G
(1)∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=
DB2+CD2=2
2,
∵CE⊥BE,
∠BEC=90°,
∵点G为BC的中点,
∴EG=
1
2BC=
2(直角三角形斜边上中线的性质).
答:EG的长是
2.
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADF=∠HDC,
∵AD∥BC,
∴∠ADF=∠DBC=45°,
∴∠HDC=45°,∴∠HDF=∠BDC-∠HDC=45°,
∴∠ADF=∠HDF,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
(解法二)证明:延长BA与CD延长线交于M,
∵△BFE和△CFD中,
∠BEF=∠CDF=90°,∠BFE=∠CFD,
∴∠MBD=∠FCD,
∵在△BCD中,∠DCB=45°,BD⊥CD,
∴∠BDC=90°,
∴∠DBC=45°=∠DCB,
∴BD=CD,
△BMD和△CFD中,
∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,
∴△BMD≌△CFD,
∴CF=BM=AB+AM,DM=DF,
∵AD∥BC,∠ADF=∠DBC=45°,∠BDM=90°,
∴∠ADM=∠ADF=45°,
在△AFD和△AMD中


DM=DF
∠ADM=∠ADF
AD=AD,
∴△AFD≌△AMD,
∴AM=AF,
∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
再问: 刚发出去就知道了中线。手抖