在各项均为正数的数列an中,前n项与sn满足sn=1/8(an+2)²(1)求证an为等差数列
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 13:37:21
在各项均为正数的数列an中,前n项与sn满足sn=1/8(an+2)²(1)求证an为等差数列
(2)bn=1/2an-30,求bn前n项和的最小值
(2)bn=1/2an-30,求bn前n项和的最小值
(1)Sn=1/8(an+2)^2,S(n-1)=1/8[a(n-1)+2]^2,
an=Sn-S(n-1)=1/8[an^2+4an-a(n-1)^2-4a(n-1)]
8an=an^2+4an-a(n-1)^2-4a(n-1)
an^2-a(n-1)^2-4an-4a(n-1)=0
[an+a(n-1)][an-a(n-1)]-4[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-4]=0
因{an}为正整数数列,即an+a(n-1)>0
所以an-a(n-1)-4=0,即an-a(n-1)=4
即{an}是等差数列
(2).a1=S1=1/8(a1+2)^2
解得a1=2
等差数列求和公式:
数列{an}中,San=na1+n(n-1)d/2=2n+2n(n-1)=2n^2
数列{bn}中,bn=1/2an-30
Sbn=1/2San-30n ,带入San=2n^2 得
Sbn=n^2-30n=(n-15)^2-225
当n=15时,数列{bn}的前n项和最小,为-225
an=Sn-S(n-1)=1/8[an^2+4an-a(n-1)^2-4a(n-1)]
8an=an^2+4an-a(n-1)^2-4a(n-1)
an^2-a(n-1)^2-4an-4a(n-1)=0
[an+a(n-1)][an-a(n-1)]-4[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-4]=0
因{an}为正整数数列,即an+a(n-1)>0
所以an-a(n-1)-4=0,即an-a(n-1)=4
即{an}是等差数列
(2).a1=S1=1/8(a1+2)^2
解得a1=2
等差数列求和公式:
数列{an}中,San=na1+n(n-1)d/2=2n+2n(n-1)=2n^2
数列{bn}中,bn=1/2an-30
Sbn=1/2San-30n ,带入San=2n^2 得
Sbn=n^2-30n=(n-15)^2-225
当n=15时,数列{bn}的前n项和最小,为-225
在各项均为正数的数列an中,前n项与sn满足sn=1/8(an+2)²(1)求证an为等差数列
已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列
已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项
各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列
求证等差数列!已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=a∧2n+n-4
已知数列an的各项均为正数,前n项和为sn,且sn=an(an+1)/2,n为正整数 求证 1.数列an是等差数列
在各项均匀正数的等比数列|an|中,数列{an}的前n项和为Sn,S1>0,6Sn=(an+1)( an+2
已知数列an的各项均为正数,前n项和Sn满足4Sn=(an+1)的平方.求an的通项公式?
已知各项均为正数的数列{an}的前n项和为Sn,满足Sn=(an²+an)/2,(1)求a1,a2,a3的值;
在各项为正的数列{an}中,数列的前n项和Sn满足Sn=2分之一(an+an分之一),(1)求a1,a2,a3.
已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式
已知正数数列an的前n项和为sn,满足sn^2=a1^3+.an^3.(1)求证an为等差数列,并求出通项公式