设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于( )
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 17:12:07
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于( )
A. A-1+B-1
B. A+B
C. A(A+B)-1B
D. (A+B)-1
A. A-1+B-1
B. A+B
C. A(A+B)-1B
D. (A+B)-1
(1)对于选项A.
∵(A-1+B-1)•(A-1+B-1)=2E+A-1B-1+B-1A-1≠E,
∴选项A错误;
(2)对于选项B.
∵(A-1+B-1)(A+B)=2E+A-1B+B-1A≠E,
∴选项B错误;
(3)对于选项C.
∵(A-1+B-1)[A(A+B)-1B]=(E+B-1A)(A+B)-1B=B-1(A+B)(A+B)-1B=E.
∴选项C正确;
(4)对于选项D.
∵(A-1+B-1)(A+B)-1=A-1(A+B)-1+B-1(A+B)-1≠E
∴选项D错误.
故选:C.
∵(A-1+B-1)•(A-1+B-1)=2E+A-1B-1+B-1A-1≠E,
∴选项A错误;
(2)对于选项B.
∵(A-1+B-1)(A+B)=2E+A-1B+B-1A≠E,
∴选项B错误;
(3)对于选项C.
∵(A-1+B-1)[A(A+B)-1B]=(E+B-1A)(A+B)-1B=B-1(A+B)(A+B)-1B=E.
∴选项C正确;
(4)对于选项D.
∵(A-1+B-1)(A+B)-1=A-1(A+B)-1+B-1(A+B)-1≠E
∴选项D错误.
故选:C.
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于( )
设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并写出(A^-1+B^-1)^-1,
设A,B,A+B,A^(-1)+B^(-1)均为n阶可逆矩阵,求(A^(-1)+B^(-1)).
老师,设A,B为n阶矩阵,A~B,证明(1) 若A,B都可逆,则A逆相似于B逆.
线性代数选择题设A,B,AB-E为同阶可逆矩阵,则[(A-B^-1)^-1-A^-1]^-1等于()(A)BAB-E(B
已知A,B均为n阶矩阵,设A为阶数大于2的可逆方阵,则(A*)^-1=(A^-1)*,怎么证明
设A、B均为n阶可逆矩阵,则A+B也可逆?
设A,B为n阶可逆矩阵,且E+BA^-1可逆,证明E+A^-1B可逆,并求出其逆矩阵表示式.
线性代数求大神:设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵
设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵,
线性代数你矩阵若A,B均为n阶可逆矩阵,问A-B,AB,AB^(-1)是否一定为可逆矩阵?若不是,请举例说明B^(-1)
设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆