f(x)在【0,3】连续,(0,3)可导,f(0)+f(1)+f(2)=3.且f(3)=1 证明至少在(0,3)有一点t
f(x)在【0,3】连续,(0,3)可导,f(0)+f(1)+f(2)=3.且f(3)=1 证明至少在(0,3)有一点t
f(x)在[0,3]连续可导 f(0)+f(1)+f(2)=3 f(3)=1 证明至少存在一点§属于(0,3)使f'(§
设f在0到1上连续且可导,3*定积分上1/3下0e^(1-x^2)f(x)dx=f(1),证明存在t在(0,1)使f'(
设F(X)在区间【0,2】连续,(0,2)可到,且f(0)=f(2),f(1)=2证明对于任意K,至少存在X在(0,2)
设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r
中值定理证明函数f(x)在【0,1】连续,在(0,1)可导,f(0)=0,且在(0,1)内f(x)!=0.证明至少存在一
证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
设f(x)在[0,1]上连续,在(0,1)可导,且f(0)=f(1)-0,f(1/2)=1/2.证明:在(0,1)内至少
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/3)=2/3,试证明至少存在一点A属
已知函数f(x)在[0,1]连续,在(0,1)可导,且f(1)=0,证明(1)在(0,1)内至少存在一点ξ,
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)