如图,在菱形ABCD中,∠ABC=60°,CD=2,点E为AD的中点,点P为对角线BD上的一个动点.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:02:36
如图,在菱形ABCD中,∠ABC=60°,CD=2,点E为AD的中点,点P为对角线BD上的一个动点.
⑴求菱形ABCD的面积S.
⑵设点P到BC、CD两边距离之和为d1,试问d1是否随点P的位置变化而变化?若变化,请说明其变化规律;若不变化,请求出d1的值.
⑶设PA+PE=d2,试探索d2与⑵中d1的大小关系(说明必要的理由).
⑴求菱形ABCD的面积S.
⑵设点P到BC、CD两边距离之和为d1,试问d1是否随点P的位置变化而变化?若变化,请说明其变化规律;若不变化,请求出d1的值.
⑶设PA+PE=d2,试探索d2与⑵中d1的大小关系(说明必要的理由).
过点A作AM⊥BC
∵四边形ABCD是菱形,
∴AB=CD=2
∵角ABC=60°
所以BM=1(60°的直角最短边=斜边的一半)
所以AM=根号3
所以S菱形ABCD=根号3*2=2根号3
(2)不变化
当点P与点B重合时有
P点到BC(为了方便用PN代替)PN=0,
P点到CD(为了方便用PM代替)PM=根号3(要画图,延长DC,因为BC=2,CM=1)
所以PN+PM=根号3
即d1=根号3
(3)这个题目应该有点问题吧,
如果是PA+PE=d2取最小值的话,那就是d1=d2
若不是那就没办法了.
先写是最小值的时候吧
连接CE,交BD于P点.∴PA=PC,∴AP+PE =CE,由∠ABC=60°,∴△ABC为等边△,∴BE=1,∴由勾股定理得CE=根号3,即PA+PE的最小值=√3=b1
希望对你有点帮助...
∵四边形ABCD是菱形,
∴AB=CD=2
∵角ABC=60°
所以BM=1(60°的直角最短边=斜边的一半)
所以AM=根号3
所以S菱形ABCD=根号3*2=2根号3
(2)不变化
当点P与点B重合时有
P点到BC(为了方便用PN代替)PN=0,
P点到CD(为了方便用PM代替)PM=根号3(要画图,延长DC,因为BC=2,CM=1)
所以PN+PM=根号3
即d1=根号3
(3)这个题目应该有点问题吧,
如果是PA+PE=d2取最小值的话,那就是d1=d2
若不是那就没办法了.
先写是最小值的时候吧
连接CE,交BD于P点.∴PA=PC,∴AP+PE =CE,由∠ABC=60°,∴△ABC为等边△,∴BE=1,∴由勾股定理得CE=根号3,即PA+PE的最小值=√3=b1
希望对你有点帮助...
如图,在菱形ABCD中,∠ABC=60°,CD=2,点E为AD的中点,点P为对角线BD上的一个动点.
如图,在菱形ABCD中,AD=8,∠ABC=120°,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值为
如图,在菱形ABCD中,AD=8,∠ABC=120°,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值等
如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为(
如图,在菱形ABCD中,∠ABC=60°,AB=2,E是BC的中点,F是对角线BD上的一个动点,请你求出EF+FC的最小
如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AD的中点,P是对角线AC上的一个动点,求PE+PD最小值.
如图,在菱形ABCD中,AB=2,∠BAD=60°,点E是AB的中点,点P是对角线AC上的一个动点,求PE+PB的最小值
如图,菱形ABCD中,∠ABC=60°,AB=2,E 是BC的中点,F是对角线BD上的一个动点,请你求出EF+FC的最小
在菱形ABCD中,AD =8,角ABC=120度,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值是多少
如图,菱形ABCD中,∠ABC=120°,菱形的边长为6,点E、F分别是边AD,CD上的两个动点(E、F与D不重合).
如图,在边长为4a的菱形ABCD中,E是BC边中点,P是对角线BD上一动点,角ABC=60度,求PE+PC的最小值.
在菱形ABCD中,∠ABC=60°,AB=2,E是BC的中点,F是对角线BD上的一个动点,求EF+FC的最小值