设f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(2)=2,则∫(0,1)xf''(x)dx=
设f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(2)=2,则∫(0,1)xf''(x)dx=
已知f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(0)=2,则∫(0,1)xf''(x)dx=
设f''(x)在[0,1]连续,且f(0)=1,f(2)=3,f'(2)=5,求∫[0,1]xf''(2x)dx
设f(x)在[0,1]上有连续的导数且f(1)=2,∫f(x)dx(1,0)=3,则∫xf'(x)dx(1,0)=?
f"(x)在[0,1]上连续,f'(1)=0,f(1)-f(0)=2,∫(0~1)xf"(x)dx=?(定积分)
一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(
设f(x)导数在【-1,1】上连续,且f(0)=1,计算∫【f(cosx)cosx-f‘(cosx)sin^2x】dx(
已知f(x)具有二阶连续导数,且f(0)=1,f(2)=4,f'(2)=2 求∫xf''(2x)dx
设函数f(x)在(-∞,+∞)上连续,且f(x)=e^x+1/e∫(0,1)f(x)dx,求f(x)
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足f(1)=3∫ e^(1-x^2) f(x) dx
证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)
设f(x)是[0,1]上的连续函数且f(x)=x^2 +不定积分(下限0,上限1)∫xf(x)dx