作业帮 > 数学 > 作业

如图所示,三角形ABC中,中线BD,CE相交于O,F,G分别为OB,OC的中点,求证:四边形DEFG为平行四边形

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 14:46:39
如图所示,三角形ABC中,中线BD,CE相交于O,F,G分别为OB,OC的中点,求证:四边形DEFG为平行四边形
如图所示,三角形ABC中,中线BD,CE相交于O,F,G分别为OB,OC的中点,求证:四边形DEFG为平行四边形
∵BD和CE为△ABC中线
∴D为AC中点,E为AB中点
∴DE为△ABC中位线
∴DE∥BC且DE=1/2BC
∵F为OB中点,G为OC中点
∴FG为△OBC中位线
∴FG∥BC且FG=1/2BC
∴DE∥=FG
∴四边形DEFG为平行四边形