已知数列{an}满足:1*a1+2*a2+3*a3+.+n*an=n(an的n是下标)(1)求数列公式(2)若bn=2^
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:57:30
已知数列{an}满足:1*a1+2*a2+3*a3+.+n*an=n(an的n是下标)(1)求数列公式(2)若bn=2^n/an
求{bn}的前n项和
求{bn}的前n项和
1*a1+2*a2+3*a3+.+n*an=n
1*a1+2*a2+3*a3+.+(n-1)*a(n-1)=n-1
两式相减得
n*an=1
an=1/n
bn=2^n/an
=2^n/(1/n)
=n*2^n
sn=1*2^1+2*2^2+3*2^3+.+n*2^n.1
2sn=1*2^2+2*2^3+3*2^4+.+n*2^(n+1).2
1式-2式得
-sn=2^1+2^2+2^3+2^4+.+2^n-n*2^(n+1)
-sn=2*(1-2^n)/(1-2)-n*2^(n+1)
-sn=2^(n+1)-2-n*2^(n+1)
sn=n*2^(n+1)-2^(n+1)+2
sn=(n-1)*2^(n+1)+2
1*a1+2*a2+3*a3+.+(n-1)*a(n-1)=n-1
两式相减得
n*an=1
an=1/n
bn=2^n/an
=2^n/(1/n)
=n*2^n
sn=1*2^1+2*2^2+3*2^3+.+n*2^n.1
2sn=1*2^2+2*2^3+3*2^4+.+n*2^(n+1).2
1式-2式得
-sn=2^1+2^2+2^3+2^4+.+2^n-n*2^(n+1)
-sn=2*(1-2^n)/(1-2)-n*2^(n+1)
-sn=2^(n+1)-2-n*2^(n+1)
sn=n*2^(n+1)-2^(n+1)+2
sn=(n-1)*2^(n+1)+2
已知数列{an}满足:1*a1+2*a2+3*a3+.+n*an=n(an的n是下标)(1)求数列公式(2)若bn=2^
已知数列{an}和{bn}满足关系式:bn=a1+a2+a3+...+an/n(n属于N*) (1)若bn=n^2,求数
已知数列{an(n下标)}满足a1(1下标)=1,a2(2下标)=3,.求证:bn(n下标)是等差数列.
设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn
已知数列 {an} 的通项公式an=2n+1,由bn=a1+a2+a3+...+an/n所确定的数列{bn}的前n
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
已知数列an满足a1+2a2+2^2a3+...+2^n-1an=n/2(1).求数列an的通项公式.(2)设bn=(2
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求数列{an}的通项公式.(2)令bn=anX^n
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求
已知数列{an}满足a1=1,an=a1+1/2a2+1/3a3+...+1/n-1an-1(n>1)求数列{an}的通
设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=
数列an满足a1+a2+a3+...+an=n^2,若bn=1/an(an+1),求bn的和sn