作业帮 > 数学 > 作业

已知:如图.在Rt△ABC中.∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:04:51
已知:如图.在Rt△ABC中.∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y
(1)用含y的代数式表示AE
(2)求y与x之间的函数关系式,并求出x的取值范围
(3)设四边形DECF的面积为S,求出S的最大值

已知:如图.在Rt△ABC中.∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别
1)AE=AC-EC
AE=8-y
2)△ADE∽△DBF,
DE/BF=AE/DF
x/(4-x)=(8-y)/y,
所以y=8-2x
(0