作业帮 > 数学 > 作业

已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A、B的椭圆,椭圆的另一焦点F的轨迹方程?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 19:14:15
已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A、B的椭圆,椭圆的另一焦点F的轨迹方程?
0 - 解决时间:2007-12-6 23:01
提问者:nneeaall - 试用期 一级
由椭圆定义得:AF+AC=BF+BC,又因为AC=13,BC=15,所以有:AF-BF=2,根据双曲线定义知:点F的轨迹为双曲线一支,其轨迹方程为:y^2-x^2/48=1(y
已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A、B的椭圆,椭圆的另一焦点F的轨迹方程?
|AF|-|BF|=2,
F点的轨迹是以A、B为焦点,2a=2的双曲线的下支 (因为到上焦点远)
故要求y