作业帮 > 数学 > 作业

不定积分,(sin x+x^2)/(xcosx)^2.上限是派/4.下限是-派/4.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 14:44:41
不定积分,(sin x+x^2)/(xcosx)^2.上限是派/4.下限是-派/4.
不定积分,(sin x+x^2)/(xcosx)^2.上限是派/4.下限是-派/4.
原式=∫(-π/4,π/4)sinx/(xcosx)²dx+∫(-π/4,π/4)x²/(xcosx)²dx
=∫(-π/4,π/4)sinx/(xcosx)²dx+∫(-π/4,π/4)dx/cos²x
∵若f(x)是奇函数,则∫(-a,a)f(x)de=0
由于sinx/(xcosx)²是奇函数
∴∫(-π/4,π/4)sinx/(xcosx)²dx=0
∴原式=0+∫(-π/4,π/4)dx/cos²x
=∫(-π/4,π/4)d(tanx)
=(tanx)|(-π/4,π/4)
=1-(-1)
=2