如图,P是等边三角形ABC内一点,PC=3,PA=4,PB=5,求AB的边长
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 14:44:50
如图,P是等边三角形ABC内一点,PC=3,PA=4,PB=5,求AB的边长
按照楼主图形的方向,将PA沿A点逆时针旋转60°,使P点落到D点,连接PD,CD
由旋转含义知:∠PAD=60°,PA=AD
∴△PAD是等边三角形,有PD=PA=4,且∠APD=60°
等边△ABC中,∠BAC=60°,AC=AB
∴∠BAC=∠PAD
而∠BAP=∠BAC-∠PAC
∠CAD=∠PAD-∠PAC
∴∠BAP=∠CAD
于是,在△BAP和△CAD中:
AB=AC,∠BAP=∠CAD,PA=AD
∴△BAP≌△CAD
∴CD=PB=5
在△PCD中,三边PD=4,CD=5,PC=3
很容易得出:CD^=PD^+PC^
由勾股定理逆定理可得出:
∠CPD=90°
∴∠APC=∠CPD+∠APD=90°+60°=150°
于是,在△APC中,已知两边PA=4,PC=3,以及两边夹角∠APC=150°,可根据余弦定理求出AC的长:
AC^=PA^+PC^-2*PA*PC*cos∠APC
代入各个数值,可求出:
AC=√(25+12√3)
即AB=√(25+12√3)
在这里,我不知道楼主是否已学余弦定理,如果没学的话,可通过作辅助线,在已知PA,PC,∠APC的情况下求出AC的长:
过A作AE⊥PC交PC延长线于点E
于是∠AEP=90°
而∠APE=180°-∠APC=180°-150°=30°
在Rt△APE中,∠AEP=90°
有sin∠APE=AE/AP,cos∠APE=PE/AP
代入∠APE=30°,AP=4,可求出:
AE=2,PE=2√3
∴CE=PE+PC=2√3+3
在Rt△AEC中,运用勾股定理可得:
AC^=AE^+CE^
代入AE=2,CE=2√3+3
可求出:
AC=√(25+12√3)
由旋转含义知:∠PAD=60°,PA=AD
∴△PAD是等边三角形,有PD=PA=4,且∠APD=60°
等边△ABC中,∠BAC=60°,AC=AB
∴∠BAC=∠PAD
而∠BAP=∠BAC-∠PAC
∠CAD=∠PAD-∠PAC
∴∠BAP=∠CAD
于是,在△BAP和△CAD中:
AB=AC,∠BAP=∠CAD,PA=AD
∴△BAP≌△CAD
∴CD=PB=5
在△PCD中,三边PD=4,CD=5,PC=3
很容易得出:CD^=PD^+PC^
由勾股定理逆定理可得出:
∠CPD=90°
∴∠APC=∠CPD+∠APD=90°+60°=150°
于是,在△APC中,已知两边PA=4,PC=3,以及两边夹角∠APC=150°,可根据余弦定理求出AC的长:
AC^=PA^+PC^-2*PA*PC*cos∠APC
代入各个数值,可求出:
AC=√(25+12√3)
即AB=√(25+12√3)
在这里,我不知道楼主是否已学余弦定理,如果没学的话,可通过作辅助线,在已知PA,PC,∠APC的情况下求出AC的长:
过A作AE⊥PC交PC延长线于点E
于是∠AEP=90°
而∠APE=180°-∠APC=180°-150°=30°
在Rt△APE中,∠AEP=90°
有sin∠APE=AE/AP,cos∠APE=PE/AP
代入∠APE=30°,AP=4,可求出:
AE=2,PE=2√3
∴CE=PE+PC=2√3+3
在Rt△AEC中,运用勾股定理可得:
AC^=AE^+CE^
代入AE=2,CE=2√3+3
可求出:
AC=√(25+12√3)
如图,P是等边三角形ABC内一点,PC=3,PA=4,PB=5,求AB的边长
如图,P是等边三角形ABC内的一点,连接PA、PB、PC,若PA:PB:PC=3:4:5,求∠BQC的度数.
1`如图,设P是等边三角形ABC内的一点,PA=3,PB=4,PC=5,求∠APB度数.
p是等边三角形ABC内一点,PC=5,PA=3,PB=4,求角APB的度数
如图:点p是等边三角形ABC内一点,PA=3 PB=5 PC=4.求:三角形ABC的面积.
已知P是等边三角形ABC内的一点,PA=2倍根号3,PB=2倍根号3,PC=4,求三角形ABC的边长
P为等边三角形ABC内一点,PA=5,PB=4,PC=3,求三角形ABC的面积
如图,点P是等边三角形ABC内部一点,且PA=2,PB=2倍根号3,pc=4,求三角形ABC边长
p是等边三角形abc内的任意一点,pa=3,pb=5.pc=4,求角APC
如图,点P是等边三角形ABC内一点,PA=2,PB=4,PC=二倍根号三,求△ABC的面积
如图,点P是等边三角形ABC内一点,PA=1,PB=根号3,PC=2,求三角形ABC的周长.
已知等边三角形ABC内一点P,PA=5,PB=3,PC=4,求∠BPC的度数