设A是mxn矩阵,B是nxs矩阵,证明:线性方程组ABX=0与BX=0同解的充分必要条件是R(AB)=R(B)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 09:06:37
设A是mxn矩阵,B是nxs矩阵,证明:线性方程组ABX=0与BX=0同解的充分必要条件是R(AB)=R(B)
设R(AB)=r,则线性方程组ABX=0的基础解系中含有s-r个解向量,又线性方程组ABX=0与BX=0同解,所以线性方程组BX=0的基础解系中也含有s-r个解向量,所以R(B)=s-(s-r)=r
即R(AB)=R(B)
反之,若R(AB)=R(B),则线性方程组ABX=0与BX=0的基础解系中所含解向量的个数相同.又显然BX=0的所有解都是ABX=0的解,所以BX=0的一个基础解系也是ABX=0的基础解系.故线性方程组ABX=0与BX=0同解.
即R(AB)=R(B)
反之,若R(AB)=R(B),则线性方程组ABX=0与BX=0的基础解系中所含解向量的个数相同.又显然BX=0的所有解都是ABX=0的解,所以BX=0的一个基础解系也是ABX=0的基础解系.故线性方程组ABX=0与BX=0同解.
设A是mxn矩阵,B是nxs矩阵,证明:线性方程组ABX=0与BX=0同解的充分必要条件是R(AB)=R(B)
设A是mxn矩阵,B是nxs矩阵,证明:若AB=0,则r(A)+r(B)
设A为mxn矩阵,B为nxs矩阵,证明AB=0的充分必要条件是B的每个列向量均为齐次线性方程组AX=0的解.
设A是mxn矩阵,B是nxm矩阵,则线性方程组ABX=0……
矩阵方程AB=0 A是mXn的矩阵 B是nXs的矩阵 那么 r(A)+r(B)小于等于n 而要是从解向量来看 B是AX=
线性代数的一道证明题设A为m*n矩阵,B为n*s矩阵,X为s维列向量,证r(AB)=r(B)是否是线性方程组ABX=0与
求证关于线代秩的证明题,A为mxn阶矩阵,B为nxs阶矩阵,AB=0,求证r(A)+r(B
证明设A为s×m矩阵,B为m×n矩阵,X为n维未知列向量,证明齐次线性方程组ABX=0与BX=0同解的充要条件是
设A是mxn矩阵,r(A)=m,证明,线性方程组Ax=b一定有解.
设A是m阶满秩阵,B是m*n阶矩阵,试证明ABx=0与Bx=0是同解方程组?并进一步利用齐次线性方程组的有关定理,
设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...
一道线性代数题目设A是mxn矩阵,非齐次线性方程组Ax=b有解的充分条件是?