若A={a},B={1,2}则从集合A到集合B只能建立一个映射.若A={1,2},B={a},则从A到B只能建立一个映射
若A={a},B={1,2}则从集合A到集合B只能建立一个映射.若A={1,2},B={a},则从A到B只能建立一个映射
若A={1,2},B={a},则从集合A到集合B只能建立一个映射,为什么
数学判断题: 如果集合A={a},集合B={1,2},那么从A到B只能建立一个映射
若集合A中只有一个元素,集合B为任意非空集合,则从集合A到集合B只能建立一个映射
错误:如果集合A只有一个元素,B为任意非空集合,则从集合A到集合B只能建立一个映射正确:如果集合B只有一个元素,A为任意
“若M={a},N={1,2}则从M到N只能建立一个映射”是错的
从集合A={a,b}到集合B={d,c}可以建立不同映射的个数是
已知集合A={a,b,c},B={1,2,3}从集合A到集合B的映射,试问能构造出多少映射?
映射 个数设集合A={a,b},B={1,2,3},则从A到B的映射个数为
集合A={a,b,c},B={d,e}则从A到B可以建立不同的映射个数为( ) A.5 ...
对于集合A中只有一个元素B为任一非空集合那么从集合A到集合B只能建立一个映射 这句话为什么错啊 我觉
已知集合A={x∈Z||x-1|≤1},B={y∈N|y=2x−2,x∈[1,4]},则可建立从集合A到集合B的映射个数