已知f(x)=-x³-x+1,(x属于R),证明y=f(x)是定义域上的减函数,且满足等式f(x)=0的实数值
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:50:18
已知f(x)=-x³-x+1,(x属于R),证明y=f(x)是定义域上的减函数,且满足等式f(x)=0的实数值x至多只有一个
设,x1>x2 ,x1x2∈(-1,1)
f(x1)-f(x2)=(x1^3+x1+1)-(x2^3+x2+1)=( x1^3-x2^3)+( x1-x2)
因为x1>x2 ,所以( x1^3-x2^3)>0,( x1-x2) >0
所以f(x1)-f(x2) >0
所以f(x)在(-1,1)内为单调递增函数.
且f(-1)=-1,f(1)=3
所以,存在唯一的x0,x0 ∈(-1,1),且f(x0)=0
因为f(x)在(-1,1)内为单调递增函数,所以,f(x)的函数图象在直角坐标系中有且仅有可能和x轴相交一次,所以满足等式f(x)=0的实数值x至多只有一个.
f(x1)-f(x2)=(x1^3+x1+1)-(x2^3+x2+1)=( x1^3-x2^3)+( x1-x2)
因为x1>x2 ,所以( x1^3-x2^3)>0,( x1-x2) >0
所以f(x1)-f(x2) >0
所以f(x)在(-1,1)内为单调递增函数.
且f(-1)=-1,f(1)=3
所以,存在唯一的x0,x0 ∈(-1,1),且f(x0)=0
因为f(x)在(-1,1)内为单调递增函数,所以,f(x)的函数图象在直角坐标系中有且仅有可能和x轴相交一次,所以满足等式f(x)=0的实数值x至多只有一个.
已知f(x)=-x³-x+1,(x属于R),证明y=f(x)是定义域上的减函数,且满足等式f(x)=0的实数值
已知f(x)=-x^3-x+1(x∈R),证明Y=f(x)是定义域上的减函数,且满足等式f(x)=0的实数值X至多只有一
已知函数y=F(x)的定义域为R并对一切实数x都满足f(2+X)=f(2-X),若f(x)是偶函数,且x属于[0,2]时
已知函数f(x)是定义域在R+上的减函数且满足f(xy)=f(x)+f(y),f(根号2)=1
已知f(x)是定义在R上的恒不为0的函数,且对任意实数x,y都满足f(x)*f(y)=f(x+y)(1)求f(0)并证明
已知函数y=f(x)的定义域为R,当x1,且对任意的实数x,y(x,y属于R),等式f(x)*f(y)=f(x+y)成立
已知函数f(x)是定义在R上的减函数,且对任意实数x,y都满足f(x+y)=f(x)+f(y),f(1)=1.若f(X)
已知函数f(x)的定义域为R,且f(x)满足条件 f(1)=0 对任意实数x,y都有f(x+y)-f(y)=x(x+2y
函数奇偶性的问题已知定义域在R上的函数y=f(x)满足f(2+x)=f(2-x),且f(x)是偶函数,当x属于[0,2]
已知f(X)是定义在实数集R上的函数,且满足f(x+2)+f(x+2)f(x)+f(x)=1,
已知函数f(x)在实数集中满足f(XY)=f(X)+f(y)且f(x)在定义域是减函数,1.求f(1)值
已知f(x)的定义域为{x属于R|x不等于0},且满足2f(x)+f(1/x)=x,试判断f(x)的奇偶性